-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval_qm9_condition_quality.py
326 lines (281 loc) · 13.9 KB
/
eval_qm9_condition_quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import math
from statistics import mean
from eval import retrieve_qm9_smiles, analyze_stability_for_molecules, retrieve_geom_smiles, compute_prop
from torch_geometric.data import DataLoader
from configs.datasets_config import get_dataset_info
from models.epsnet import *
from qm9.utils import compute_mean_mad
from utils.datasets import *
from utils.misc import *
from utils.reconstruct import *
from utils.sample import *
from utils.transforms import *
import faulthandler
faulthandler.enable()
# from utils.reconstruct import *
def RMSD(probe, ref):
rmsd = 0.0
# print(amap)
assert len(probe) == len(ref)
atom_num = len(probe)
for i in range(len(probe)):
posp = probe[i]
posf = ref[i]
rmsd += dist_2(posp, posf)
rmsd = math.sqrt(rmsd / atom_num)
return rmsd
def dist_2(atoma_xyz, atomb_xyz):
dis2 = 0.0
for i, j in zip(atoma_xyz, atomb_xyz):
dis2 += (i - j) ** 2
return dis2
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='qm9',
help='qm9, geom')
parser.add_argument('--ckpt', type=str, help='path for loading the checkpoint')
parser.add_argument('--tag', type=str, default='')
parser.add_argument('--test_set', type=str, default=None)
parser.add_argument('--out_dir', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument("--context", nargs='+', default=[],
help='arguments : homo | lumo | alpha | gap | mu | Cv')
parser.add_argument('--num_samples', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--save_sdf', type=bool, default=True)
parser.add_argument('--quality_sampling', type=bool, default=True,
help='quality sampling for visualization in Figure 4, else validity sampling for Table 2')
parser.add_argument('--clip', type=float, default=1000.0)
parser.add_argument('--n_steps', type=int, default=1000,
help='sampling num steps; for DSM framework, this means num steps for each noise scale')
parser.add_argument('--global_start_sigma', type=float, default=float('inf'),
help='enable global gradients only when noise is low')
parser.add_argument('--local_start_sigma', type=float, default=float('inf'),
help='enable local gradients only when noise is low')
parser.add_argument('--w_global_pos', type=float, default=1.0,
help='weight for global gradients')
parser.add_argument('--w_local_pos', type=float, default=1.0,
help='weight for local gradients')
parser.add_argument('--w_global_node', type=float, default=1.0,
help='weight for global gradients')
parser.add_argument('--w_local_node', type=float, default=1.0,
help='weight for local gradients')
# Parameters for DDPM
parser.add_argument('--sampling_type', type=str, default='generalized',
help='generalized, ddpm_noisy, ld: sampling method for DDIM, DDPM or Langevin Dynamics')
parser.add_argument('--eta', type=float, default=1.0,
help='weight for DDIM and DDPM: 0->DDIM, 1->DDPM')
args = parser.parse_args()
ckpt = torch.load(args.ckpt)
args.dataset = 'qm9' if 'qm9' in args.ckpt else 'geom'
config = ckpt['config']
seed_all(config.train.seed)
log_dir = os.path.dirname(os.path.dirname(args.ckpt))
args.global_start_sigma = 0.5 # float('inf')
# args.local_start_sigma = 1
args.n_steps = ckpt['config'].model.num_diffusion_timesteps
args.w_global_pos = 1
args.w_global_node = 0.5
args.w_local_pos = 1
args.w_local_node = 3
# data_list
dataset_info = get_dataset_info(args.dataset, False)
num_samples = args.num_samples
batch_size = args.batch_size
data_list, nodesxsample_list = construct_dataset(num_samples, batch_size, dataset_info)
transforms = Compose([CountNodesPerGraph(), GetAdj(), AtomFeat(dataset_info['atom_index'])])
if args.dataset == 'qm9':
train_set = QM93D('train', pre_transform=transforms)
split_idx = train_set.get_half_split(train_set.data.y.size(0), 'qm9_second_half')
train_set = train_set[split_idx]
val_set = QM93D('valid', pre_transform=transforms)
val_loader = DataLoader(val_set, config.train.batch_size, shuffle=False)
elif args.dataset == 'geom':
train_set = Geom(pre_transform=transforms)
else:
raise Exception('Wrong dataset name')
train_loader = inf_iterator(DataLoader(train_set, batch_size, shuffle=True))
# Logging
TAG = 'result'
if num_samples < 10000:
tag = 'test'
output_dir = get_new_log_dir(log_dir, args.sampling_type + "_vae_N(1)_" + tag, tag=args.tag)
logger = get_logger('test')
logger.info(args)
# Model
logger.info('Building model...')
logger.info(ckpt['config'].model['network'])
model = get_model(ckpt['config'].model).to(args.device)
model.load_state_dict(ckpt['model'])
print(ckpt['config'].model)
model.eval()
sa_list = []
valid = 0
smile_list = []
results = []
sum_rmsd = 0
clip_local = None
stable = 0
logger.info('dataset:%s' % args.dataset)
logger.info('sample num:%d' % num_samples)
logger.info('sample method:%s' % args.sampling_type)
logger.info('w_global_pos:%.1f' % args.w_global_pos)
logger.info('w_global_node:%.1f' % args.w_global_node)
logger.info('w_local_pos:%.1f' % args.w_local_pos)
logger.info('w_local_node:%.1f' % args.w_local_node)
show_detail = False
position_list = []
atom_type_list = []
mols_dict = []
args.context = ['alpha']
context_value = ['validity sampling']
if len(args.context) > 0:
property_norms = compute_mean_mad(train_set, args.context, args.dataset)
mean, mad, max_v, min_v = property_norms[args.context[0]]['mean'], property_norms[args.context[0]]['mad'], \
property_norms[args.context[0]]['max'], property_norms[args.context[0]]['min']
if args.quality_sampling:
context_value = torch.tensor(np.arange(0.05, 0.38, 0.02))
else:
prop_dist = DistributionProperty(train_loader, args.context)
if prop_dist is not None:
prop_dist.set_normalizer(property_norms)
for c in context_value:
if args.quality_sampling:
c_norm = (c - mean) / mad
context = torch.tensor([c_norm] * batch_size).to(args.device)
else:
context = prop_dist.sample_batch(nodesxsample_list[n]).to(args.device)
for n, datas in enumerate(tqdm(data_list)):
with torch.no_grad():
start_time = time.time()
batch = Batch.from_data_list(datas).to(args.device)
try:
pos_gen, pos_gen_traj, atom_type, atom_traj = model.langevin_dynamics_sample(
atom_type=batch.x,
# atom_type = batch.atom_feat_full.float(),
pos_init=batch.pos,
bond_index=batch.edge_index,
bond_type=None,
batch=batch.batch,
num_graphs=batch.num_graphs,
extend_order=False, # Done in transforms.
n_steps=args.n_steps,
step_lr=1e-6, # 1e-6
w_global_pos=args.w_global_pos,
w_global_node=args.w_global_node,
w_local_pos=args.w_local_pos,
w_local_node=args.w_local_node,
global_start_sigma=args.global_start_sigma,
clip=args.clip,
clip_local=clip_local,
sampling_type=args.sampling_type,
eta=args.eta,
context=context
)
pos_list = unbatch(pos_gen, batch.batch)
atom_list = unbatch(atom_type, batch.batch)
current_num_samples = (n + 1) * batch_size
secs_per_sample = (time.time() - start_time) / current_num_samples
print('\t %d/%d Molecules generated at %.2f secs/sample' % (
current_num_samples, num_samples, secs_per_sample))
for m in range(batch_size):
pos = pos_list[m]
atom_type = atom_list[m]
# charge
atom_type = atom_type[:, :-1]
charge = atom_type[:, -1]
atom_type = torch.argmax(atom_type, dim=1)
position_list.append(pos.cpu().detach())
atom_type_list.append(atom_type.cpu().detach())
a = 0
mol = build_molecule(pos, atom_type, dataset_info)
smile = mol2smiles(mol)
ptable = Chem.GetPeriodicTable()
atom_decoder = dataset_info['atom_decoder']
atom_type = [atom_decoder[i] for i in atom_type]
atom_type = [ptable.GetAtomicNumber(i.capitalize()) for i in atom_type]
property = compute_prop(atom_type, pos.cpu().numpy(), args.context[0])
print(f'{args.context[0]: {property:.4f}}')
if show_detail:
print("generated smile:", smile)
result = {'atom_type': atom_type, 'pos': pos, 'smile': smile}
results.append(result)
if smile is not None:
valid += 1
stable_flag = False
if "." not in smile:
stable += 1
stable_flag = True
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True)
largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
smile = mol2smiles(largest_mol)
smile_list.append(smile)
if args.save_sdf:
conf = Chem.Conformer(mol.GetNumAtoms())
for i in range(mol.GetNumAtoms()):
conf.SetAtomPosition(i, (float(pos[i][0]), float(pos[i][1]), float(pos[i][2])))
mol.AddConformer(conf)
sdf_dir = './results/conditioned/{}/molecule_{}'.format(args.context[0],
'with_value')
if not os.path.exists(sdf_dir):
os.mkdir(sdf_dir)
# writer = Chem.SDWriter(os.path.join(sdf_dir, '%s.sdf' % 'full_{}_{}'.format(n,m)))
writer = Chem.SDWriter(os.path.join(sdf_dir, '%s.sdf' % 'full_{}_{}_{}'.format(
args.context[0], c.item(), gap)))
# print('%s.sdf' % 'full_{}_{}'.format(n,m))
writer.write(mol, confId=0)
writer.close()
break
except FloatingPointError:
clip_local = 10
logger.warning('Retrying with local clipping.')
raise Exception('Nan in position')
print('----------------------------')
# print('diversity:', diversity(smile_list))
logger.info("The %dth validity:%.4f" % (n + 1, valid / ((n + 1) * batch_size)))
logger.info("The %dth stable:%.4f" % (n + 1, stable / ((n + 1) * batch_size)))
logger.info("The %dth Uniq:%.4f" % (n + 1, len(set(smile_list)) / ((n + 1) * batch_size)))
print('----------------------------')
validity_dict = analyze_stability_for_molecules(position_list, atom_type_list, dataset_info)
print(validity_dict)
print("Final validity:", valid / num_samples)
print("Final stable:", stable / num_samples)
print("Final unique:", len(set(smile_list)) / num_samples)
print(len(set(smile_list)) / valid)
logger.info("Final validity:%.4f" % (valid / num_samples))
logger.info("Final stable:%.4f" % (stable / num_samples))
logger.info("Final unique:%.4f" % (len(set(smile_list)) / num_samples))
uniq = list(set(smile_list))
if args.dataset == 'qm9':
dataset_smile_list = retrieve_qm9_smiles()
else:
dataset_smile_list = retrieve_geom_smiles()
novel = []
for smile in uniq:
if smile not in dataset_smile_list:
novel.append(smile)
# print(smile)
# else:
# print()
print(len(novel))
novelty = len(novel) / len(uniq)
logger.info("Final novelty:%.4f" % novelty)
save = True
if num_samples == 10000:
save = True
if save:
save_path = os.path.join(output_dir, 'samples_all.pkl')
logger.info('Saving samples to: %s' % save_path)
save_smile_path = os.path.join(output_dir, 'samples_smile.pkl')
with open(save_path, 'wb') as f:
pickle.dump(results, f)
with open(save_smile_path, 'wb') as f:
pickle.dump(smile_list, f)
# diversity_score = diversity(list(set(smile_list)))
# logger.info("Final similar score in uniqueness list:%.4f" % (diversity_score))
# print(diversity_score)
# import pandas as pd
# name = ['smiles']
# smiles = pd.DataFrame(columns=name,data=list(set(smile_list)))
# smiles.to_csv('./MDM6x4_GEOM_100_smiles_list_bondTure2_531.csv',encoding='utf-8')