-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbenchmark_gate_counts.py
128 lines (93 loc) · 3.65 KB
/
benchmark_gate_counts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import glob
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
from qiskit import *
from qiskit.quantum_info import Statevector
import mis
from utils.graph_funcs import *
from utils.helper_funcs import *
from ansatz import qaoa, qv_ansatz, dqv_ansatz, dqv_cut_ansatz
def get_data(sample_graphs):
qaoa_data = {}
dqva_data = {}
for graph_name in sample_graphs:
print(graph_name)
G = graph_from_file(graph_name)
nq = len(G.nodes())
opt_mis = brute_force_search(G)[1]
init_state = '0'*nq
mixer_order = list(range(nq))
graph_key = graph_name.split('/')[-1].strip('.txt')
graph_qaoa_data = []
graph_dqva_data = []
print('\n\nBEGIN QAOA\n\n')
for P in [1,2,3]:
output = mis.solve_mis_qaoa(init_state, G, P=P, mixer_order=mixer_order, sim='qasm')
ap_ratio = hamming_weight(output[0]) / opt_mis
mixer_count = nq * P
print('-'*30)
print('Found approximation ratio = {}, with {} partial_mixers'.format(ap_ratio, mixer_count))
print('-'*30)
graph_qaoa_data.append((mixer_count, ap_ratio))
qaoa_data[graph_key] = graph_qaoa_data
print('\n\nBEGIN DQVA\n\n')
for plim in [3, 9, 15, 21]:
output = mis.solve_mis_dqva(init_state, G, m=5, mixer_order=mixer_order, sim='qasm', param_lim=plim)
ap_ratio = hamming_weight(output[0]) / opt_mis
mixer_count = plim - 1
print('-'*30)
print('Found approximation ratio = {}, with {} partial_mixers'.format(ap_ratio, mixer_count))
print('-'*30)
graph_dqva_data.append((mixer_count, ap_ratio))
dqva_data[graph_key] = graph_dqva_data
return qaoa_data, dqva_data
def plot_comparison(qaoa_data, dqva_data, savefig=None, show=True):
assert(list(qaoa_data.keys()) == list(dqva_data.keys()))
for graph in qaoa_data.keys():
fig, ax = plt.subplots(dpi=150)
for dat, label in zip([qaoa_data, dqva_data], ['QAOA', 'DQVA']):
xvals = [tup[0] for tup in dat[graph]]
yvals = [tup[1] for tup in dat[graph]]
print(label)
print(xvals)
print(yvals)
ax.plot(xvals, yvals, label=label)
ax.set_title(graph)
ax.legend()
ax.set_ylabel('Approximation Ratio')
ax.set_xlabel('Number of partial mixers')
if show:
plt.show()
if not savefig is None:
plt.savefig(savefig)
plt.close()
def main():
test_graphs = glob.glob('benchmark_graphs/N12_p20_graphs/*')
test_graphs = sorted(test_graphs, key=lambda g: int(g.split('/')[-1].strip('G.txt')))
print(len(test_graphs))
sample_graphs = test_graphs[0:50]
print(len(sample_graphs))
qaoa_data, dqva_data = get_data(sample_graphs)
all_x = []
all_y = []
for key, data in qaoa_data.items():
all_x.append([v[0] for v in data])
all_y.append([v[1] for v in data])
all_x = np.mean(all_x, axis=0)
all_y = np.mean(all_y, axis=0)
avg_qaoa_data = {'Avg Erdos-Renyi N=12':list(zip(all_x, all_y))}
all_x = []
all_y = []
for key, data in dqva_data.items():
all_x.append([v[0] for v in data])
all_y.append([v[1] for v in data])
all_x = np.mean(all_x, axis=0)
all_y = np.mean(all_y, axis=0)
avg_dqva_data = {'Avg Erdos-Renyi N=12':list(zip(all_x, all_y))}
print(avg_qaoa_data)
print(avg_dqva_data)
plot_comparison(avg_qaoa_data, avg_dqva_data,
savefig='figures/avg_erdosrenyi_N12_graphs.png', show=False)
if __name__ == '__main__':
main()