-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtssim.c
262 lines (224 loc) · 7.01 KB
/
tssim.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* API implementation for tssim */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tssim.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_fft_real.h>
#include <gsl/gsl_fft_halfcomplex.h>
#include <spatialindex/capi/sidx_api.h>
#include <time.h>
#include <math.h>
/* TODO: generate n time series signals and optionally save */
double* ts_gen(TSeries* ts){
printf("inside ts_gen\n");
int res = sprintf (ts->name, "%lu-%d", (unsigned long)(time(NULL)/86400),ts->id);
printf("nts: %d, fname_prefix: %s\n", ts->nelem, ts->name);
double* elems = (double*)malloc((ts->nelem)*sizeof(double));
// fill ts using random walk
const gsl_rng_type * T;
gsl_rng * r;
gsl_rng_env_setup();
T = gsl_rng_default;
// T = gsl_rng_mt19937_1998;
r = gsl_rng_alloc (T);
gsl_rng_set(r, ts->seed);
double sum = 0.0;
double rnd = 0.0;
for(int i=0; i<ts->nelem; i++){
rnd = gsl_ran_flat(r, -500.0, 500.0);
elems[i] = sum + rnd;
sum = elems[i];
printf("elem[%d]: %f and rand: %f\n", i, elems[i], rnd);
}
gsl_rng_free (r);
ts->ts = elems;
// save to disk if required
// TODO: move this type of save blocks to own func.
char fname[LEN_FNAME];
strcpy(fname, "./db/");
strcat(fname, ts->name);
FILE* pf = fopen(fname, "w");
if(ts->save == true && pf != NULL){
for(int i=0; i<ts->nelem; i++){
fprintf(pf, "%f\n", ts->ts[i]);
}
fclose(pf);
}
return elems;
}
/* TODO: generate a similar time series as input and optionally save */
double* ts_gen_sim(TSeries* ots, TSeries* its){
printf("inside ts_gen_sim\n");
ots->nelem = its->nelem;
strcpy(ots->name, its->name);
double* elems = (double*)malloc((ots->nelem)*sizeof(double));
// fill output with input plus a small random noise
const gsl_rng_type * T;
gsl_rng * r;
gsl_rng_env_setup();
T = gsl_rng_default;
r = gsl_rng_alloc (T);
gsl_rng_set(r, ots->seed);
double rnd = 0.0;
for(int i=0; i<ots->nelem; i++){
rnd = 0.05 * gsl_ran_flat(r, -500.0, 500.0);
elems[i] = its->ts[i] + rnd;
printf("elem[%d]: %f and rand: %f\n", i, elems[i], rnd);
}
gsl_rng_free (r);
ots->ts = elems;
// save to disk if required
// TODO: move this type of save blocks to own func.
char fname[LEN_FNAME];
strcpy(fname, "./db/");
strcat(fname, ots->name);
strcat(fname, "-sim");
FILE* pf = fopen(fname, "w");
if(ots->save == true && pf != NULL){
for(int i=0; i<ots->nelem; i++){
fprintf(pf, "%f\n", ots->ts[i]);
}
fclose(pf);
}
return elems;
}
/* TODO: generate a lagged version of a time series and opt. save */
double* ts_gen_lag(TSeries* ots, TSeries* its, int lag){
printf("inside ts_gen_lag\n");
ots->nelem = its->nelem;
// ots->seed = its->seed;
ots->id = its->id;
strcpy(ots->name, its->name);
double* elems = (double*)malloc((ots->nelem)*sizeof(double));
// pad the initial elements
for(int i=0; i<lag; i++){
elems[i] = 0;
}
for(int i=lag; i<ots->nelem; i++){
elems[i] = its->ts[i-lag];
}
ots->ts = elems;
// save to disk if required
// TODO: move this type of save blocks to own func.
char fname[LEN_FNAME];
strcpy(fname, "./db/");
strcat(fname, ots->name);
strcat(fname, "-lag");
FILE* pf = fopen(fname, "w");
if(ots->save == true && pf != NULL){
for(int i=0; i<ots->nelem; i++){
fprintf(pf, "%f\n", ots->ts[i]);
}
fclose(pf);
}
return elems;
}
/* TODO: transform time series given a transform func like dft and optionally compress */
void ts_tfr(TSeries* ts){
printf("inside ts_tfr \n");
gsl_fft_real_wavetable * real;
gsl_fft_real_workspace * work;
work = gsl_fft_real_workspace_alloc (ts->nelem);
real = gsl_fft_real_wavetable_alloc (ts->nelem);
ts->fs = (double*)malloc((ts->nelem)*sizeof(double));
for(int i=0; i<ts->nelem; i++){
ts->fs[i] = ts->ts[i];
}
gsl_fft_real_transform (ts->fs, 1, ts->nelem, real, work);
gsl_fft_real_wavetable_free (real);
// just a test
/* gsl_fft_halfcomplex_wavetable * hc;
hc = gsl_fft_halfcomplex_wavetable_alloc (ts->nelem);
for(int i = 11; i < ts->nelem; i++){
ts->fs[i] = 0;
}
gsl_fft_halfcomplex_inverse (ts->fs, 1, ts->nelem, hc, work);
gsl_fft_halfcomplex_wavetable_free (hc);
FILE* pf = fopen("./db/idft.txt", "w");
for (int i = 0; i < ts->nelem; i++){
fprintf(pf, "%f\n", ts->fs[i]);
}
fclose(pf);
*/
gsl_fft_real_workspace_free (work);
return;
}
/* TODO: index time series */
IndexH ts_index(TSSimContext* tsctx){
printf("inside ts_index \n");
IndexPropertyH props = IndexProperty_Create();
// create an in-memory r*-tree index
IndexProperty_SetIndexType(props, RT_RTree);
IndexProperty_SetDimension(props, LEN_IDX_DIM);
IndexProperty_SetIndexStorage(props, RT_Memory);
IndexH idx = Index_Create(props);
IndexProperty_Destroy(props);
if (Index_IsValid(idx))
{
for(int i=0; i<tsctx->nts; i++){
Index_InsertData(idx, tsctx->tss[i].id, tsctx->tss[i].fs, tsctx->tss[i].fs, 5, 0, 0);
}
}
else
{
printf("Failed to create valid index\n");
}
return idx;
}
/* TODO: time series search given a search func e.g. knn */
void ts_search(IndexH idx, TSeries* tssim){
printf("inside ts_search \n");
uint64_t nResults = 2;
int64_t* ids;
Index_NearestNeighbors_id(idx, tssim->fs, tssim->fs, 5, &ids, &nResults);
if(nResults>0)
printf("nResults is: %ld\nId of the most sim. is: %ld\nquery ts index is: %d\n", nResults, ids[0], tssim->id);
return;
}
/* TODO: time series lag corr. calc. */
int ts_calc_lag(TSeries* ts1, TSeries* ts2){
printf("inside ts_calc_lag \n");
double corr = 0, maxcorr=0;
int lag = 0;
double sum_tslag, sum_ts2, sum_tslagts2;
double squareSum_tslag, squareSum_ts2;
for (int j = 0; j < ts1->nelem; j++){
TSeries* tslag = (TSeries*)malloc(sizeof(TSeries));
tslag->save = false;
ts_gen_lag(tslag, ts1, j);
sum_tslag = 0, sum_ts2 = 0, sum_tslagts2 = 0;
squareSum_tslag = 0, squareSum_ts2 = 0;
for (int i = 0; i < ts1->nelem; i++){
// sum of elements of array tslag.
sum_tslag = sum_tslag + tslag->ts[i];
// sum of elements of array ts2.
sum_ts2 = sum_ts2 + ts2->ts[i];
// sum of tslag[i] * ts2[i].
sum_tslagts2 = sum_tslagts2 + tslag->ts[i] * ts2->ts[i];
// sum of square of array elements.
squareSum_tslag = squareSum_tslag + tslag->ts[i] * tslag->ts[i];
squareSum_ts2 = squareSum_ts2 + ts2->ts[i] * ts2->ts[i];
}
// use formula for calculating correlation coefficient.
corr = (ts1->nelem * sum_tslagts2 - sum_tslag * sum_ts2)
/ sqrt((ts1->nelem * squareSum_tslag - sum_tslag * sum_tslag)
* (ts1->nelem * squareSum_ts2 - sum_ts2 * sum_ts2));
printf("lag is: %d and corr is: %f\n", lag, corr);
if(corr > maxcorr){
maxcorr = corr;
lag = j;
}
free(tslag->ts);
// free(tslag->fs);
free(tslag);
}
printf("lag is: %d\n", lag);
return lag;
}
/* TODO: build lag graph ?? */
void ts_lag_graph(){
printf("inside ts_lag_graph \n");
return;
}