-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
152 lines (126 loc) · 5.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import torch
import pandas as pd
import numpy as np
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from utils import read_data_spectrum, get_dataloader, plot, get_input_target
from network import BiomassPredictor
def seed_everything(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def parse_arguments():
parser = argparse.ArgumentParser("HyLight")
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--epoch", type=int, default=300)
parser.add_argument("--lr", type=float, default=5e-3)
parser.add_argument("--type", type=str, default="custom", choices=["custom"])
parser.add_argument("--model_path", type=str, default="model/")
parser.add_argument("--output_size", type=int, default=1)
parser.add_argument('--test', action='store_true', default=False, help='Test the model')
parser.add_argument("--model_seed", type=int, default=0)
# database related arguments
parser.add_argument("--db_server", type=str, default="x.x.x.x")
parser.add_argument("--db", type=str, default="dbname")
parser.add_argument("--growth_table", type=str, default="growth_data")
parser.add_argument("--treatment_table", type=str, default="treatment")
parser.add_argument("--raw_treatment_table", type=str, default="raw_treatment")
return parser.parse_args()
args = parse_arguments()
def train(trainloader, model, criterion, optimizer, epoch, valloader, min_loss, cnt):
losses = []
for i in range(epoch):
model.train()
for input, target in trainloader:
input, target = input.cuda(), target.cuda()
output = model(input)
loss = criterion(output, target)
losses.append(loss.item())
# print(loss.detach().numpy())
optimizer.zero_grad()
loss.backward()
optimizer.step()
l = evaluate(valloader, model, criterion)
# print("Epoch ", i, " validation loss", l)
# save if validation loss is better than past models
if l < min_loss:
min_loss = l
torch.save(model.state_dict(), args.model_path+"/nn_"+str(cnt)+".pth")
# plt.plot(losses)
# plt.savefig("visualization/loss"+str(i)+".png")
# plt.close()
return min_loss, l
def evaluate(test_loader, model, criterion):
model.eval()
loss = []
for input, target in test_loader:
input, target = input.cuda(), target.cuda()
output = model(input)
loss.append(criterion(output, target).cpu().detach().numpy())
return sum(loss)
def test(test_df, model):
model.eval()
X_test, target = get_input_target(test_df)
predicted = model(torch.from_numpy(X_test).float().cuda()).cpu().detach().numpy()
rmse = np.sqrt(mean_squared_error(target, predicted))
r2 = r2_score(target, predicted)
mae = mean_absolute_error(target, predicted)
plot(target, predicted, "BioNet", rmse, r2, "NN")
# plot_scatter(target, predicted, "1D CNN", rmse, r2, "NN_"+str(num_band))
return rmse, r2, mae
if __name__ == "__main__":
results = {}
min_loss = 100.0
results["rmse"] = []
results["r2"] = []
results["valloss"] = []
data_df = read_data_spectrum(args, 401)
'''normalize'''
max_val = data_df.max(axis=1).max()
# print(max_val)
for i in range(401):
data_df[str(i)] /= max_val
treatments = data_df['treatment_name'].unique().tolist()
test_treatment = ["1", "2", "3", "4", "5", "6", "7", "8"]
val_treatment = ["9", "10", "11", "12", "13", "14", "15", "16"]
test_df = data_df[data_df['treatment_name'].isin(test_treatment)].copy(deep=True)
val_df = data_df[data_df['treatment_name'].isin(val_treatment)].copy(deep=True)
train_df = data_df[~data_df['treatment_name'].isin(test_treatment+val_treatment)].copy(deep=True)
'''Drop treatment_name column as it is not needed for training.'''
for df in [train_df, val_df, test_df]:
df.drop(['treatment_name'], axis=1, inplace=True)
df.dropna(inplace=True)
'''For training using 100 seeds'''
if not args.test:
for i in range(100):
seed_everything(i)
train_df = shuffle(train_df)
te_df = test_df.copy(deep=True)
tr_df = train_df.copy(deep=True)
va_df = val_df.copy(deep=True)
trainloader = get_dataloader(tr_df, args.batch_size)
# testloader = get_dataloader(test_data, args.batch_size)
valloader = get_dataloader(va_df, args.batch_size)
input_size = 401 + 1 # plus one for age of the plant
model = BiomassPredictor(input_size, args.output_size).cuda()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
loss, l = train(trainloader, model, criterion, optimizer, args.epoch, valloader, min_loss, i)
min_loss = loss if loss < min_loss else min_loss
rmse, r2, _ = test(val_df.copy(deep=True), model)
print(i, rmse, r2, l)
results["rmse"].append(rmse)
results["r2"].append(r2)
results["valloss"].append(l)
result_df = pd.DataFrame.from_dict(results)
result_df.to_csv ("results_nn.csv", index = False, header=True)
else:
'''save best model as nn.pth manually'''
model = BiomassPredictor(402, args.output_size).cuda()
model.load_state_dict(torch.load(args.model_path+"/nn.pth"))
model.eval()
rmse, r2, mae = test(test_df.copy(deep=True), model, str(args.num_band))
print(rmse, r2, mae)