-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.R
328 lines (230 loc) · 14.8 KB
/
optimization.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#updated 12/11
#summary: monthly optimization of gin trash to generate electricity and/or ammonia
#I use the lp function from lpSolve package for optimization
#There is another package called linprog (same arguments as linprog from matlab)
#but lpSolve is written in C which is a compiled language as opposed to R, which is an interpreted language
#One consequence of this is that lpsolve is much faster than linprog
#More details: http://www.noamross.net/archives/2014-04-16-vectorization-in-r-why/
#The optimization here is a monthly iteration with annual gin trash data (9 iteration in a year)
#So each iteration is dependent on the results of previous iterations
#I also have 10,000 rows of data, meaning each sequence of a full iteration is run 10,000 times, which I do using a loop
#I can use a nested loop for the iterations; but, the conditions in each iteration (obj function, constraints) are different
#So writing a nested loop may make the codes cleaner but at the expense of my readability
rm(list=ls())
library(lpSolve)
data <- read.csv("gin.csv")
#sensitivity analysis:
#(i) change eff=2/3;
#(ii) reduce lower base to 25;
#(iii) reduce ammonia marginal cost to 85 (change 17.35 to 13.23);
#(iv) change extra_fc=75000;
#(v) increase electricity price by 10%, price_inc=1.1 instead of 1.0
n=nrow(data)
U <- data$gin_medium
c=7 #electricity plant capacity
m=0 #no. of ammonia plant
#only for sensitivity analysis
eff=1
extra_fc=0
price_inc=1.1
XC=matrix(NA, nrow=n, ncol=55)
XC <- assign(paste("XC", c, m, sep = ""), matrix(NA, nrow=n, ncol=55))
#profvis
system.time(
for (i in seq_along(XC[,1])){
f.con <- matrix (c(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), nrow = 6, byrow = TRUE)
f.dir <- c("<=", "<=", "<=", "<=", "<=", "<=")
f.con_sum <- matrix (c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1), nrow = 5, byrow = TRUE)
f.dir_sum <- c("<=", "<=", "<=", "<=", "<=")
#for december
f.obj <- c((data$dec_peak[i]*price_inc-5.5), (data$dec_ubase[i]*price_inc-5.5), (data$dec_lbase[i]*price_inc-5.5), ((data$winter_crop[i]/11-17.35)))
f.rhs <- c(340*c*eff, U[i]*eff, 68*c*eff, 187*c*eff, 85*c*eff, 369*m*eff)
results_dec <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_dec$solution[1]+results_dec$solution[2]+results_dec$solution[3]+results_dec$solution[4])*1/eff
XC[i,1] <- results_dec$solution[1]
XC[i,12] <- results_dec$solution[2]
XC[i,23] <- results_dec$solution[3]
XC[i,34] <- results_dec$solution[4]
XC[i,45] <- as.numeric(format(round(U[i]-total, 3), nsmall=3))
gin <- XC[i,45]
#for january
f.obj <- c((data$jan_peak[i]*price_inc-5.5), (data$jan_ubase[i]*price_inc-5.5), (data$jan_lbase[i]*price_inc-5.5), ((data$winter_crop[i]/11-17.35)))
f.rhs <- c(620*c*eff, gin*eff, 217*c*eff, 248*c*eff, 155*c*eff, 672*m*eff)
results_jan <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_jan$solution[1]+results_jan$solution[2]+results_jan$solution[3]+results_jan$solution[4])*1/eff
XC[i,2] <- results_jan$solution[1]
XC[i,13] <- results_jan$solution[2]
XC[i,24] <- results_jan$solution[3]
XC[i,35] <- results_jan$solution[4]
XC[i,46] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,46]
#for february
f.obj <- c((data$feb_peak[i]*price_inc-5.5), (data$feb_ubase[i]*price_inc-5.5), (data$feb_lbase[i]*price_inc-5.5), ((data$winter_crop[i]/11-17.35)))
f.rhs <- c(560*c*eff, gin*eff, 196*c*eff, 224*c*eff, 140*c*eff, 640*m*eff)
results_feb <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_feb$solution[1]+results_feb$solution[2]+results_feb$solution[3]+results_feb$solution[4])*1/eff
XC[i,3] <- results_feb$solution[1]
XC[i,14] <- results_feb$solution[2]
XC[i,25] <- results_feb$solution[3]
XC[i,36] <- results_feb$solution[4]
XC[i,47] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,47]
#march divided into two parts: first part has peak electricity and second part does not
#for march first half with peak electricity
f.obj <- c((data$mar_peak[i]*price_inc-5.5), (data$mar_ubase[i]*price_inc-5.5), (data$mar_lbase[i]*price_inc-5.5), ((data$summer_crop[i]/11-17.35)))
f.rhs <- c(300*c*eff, gin*eff, 60*c*eff, 165*c*eff, 75*c*eff, 325*m*eff)
results_mar1 <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_mar1$solution[1]+results_mar1$solution[2]+results_mar1$solution[3]+results_mar1$solution[4])*1/eff
XC[i,4] <- results_mar1$solution[1]
XC[i,15] <- results_mar1$solution[2]
XC[i,26] <- results_mar1$solution[3]
XC[i,37] <- results_mar1$solution[4]
XC[i,48] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,48]
#for march second half without peak electricity
f.obj <- c((data$mar_ubase[i]*price_inc-5.5), (data$mar_lbase[i]*price_inc-5.5), ((data$summer_crop[i]/11-17.35)))
f.rhs <- c(304*c*eff, gin*eff, 224*c*eff, 80*c*eff, 347*m*eff)
results_mar2 <- lp("max", f.obj, f.con_sum, f.dir_sum, f.rhs)
total <- as.numeric(results_mar2$solution[1]+results_mar2$solution[2]+results_mar2$solution[3])*1/eff
XC[i,5] <- 0
XC[i,16] <- results_mar2$solution[1]
XC[i,27] <- results_mar2$solution[2]
XC[i,38] <- results_mar2$solution[3]
XC[i,49] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,49]
#for april
f.obj <- c((data$apr_ubase[i]*price_inc-5.5), (data$apr_lbase[i]*price_inc-5.5), ((data$summer_crop[i]/11-17.35)))
f.rhs <- c(570*c*eff, gin*eff, 420*c*eff, 150*c*eff, 672*m*eff)
results_apr <- lp("max", f.obj, f.con_sum, f.dir_sum, f.rhs)
total <- as.numeric(results_apr$solution[1]+results_apr$solution[2]+results_apr$solution[3])*1/eff
XC[i,6] <- 0
XC[i,17] <- results_apr$solution[1]
XC[i,28] <- results_apr$solution[2]
XC[i,39] <- results_apr$solution[3]
XC[i,50] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,50]
#for may
f.obj <- c((data$may_ubase[i]*price_inc-5.5), (data$may_lbase[i]*price_inc-5.5), ((data$summer_crop[i]/11-17.35)))
f.rhs <- c(589*c*eff, gin*eff, 434*c*eff, 155*c*eff, 672*m*eff)
results_may <- lp("max", f.obj, f.con_sum, f.dir_sum, f.rhs)
total <- as.numeric(results_may$solution[1]+results_may$solution[2]+results_may$solution[3])*1/eff
XC[i,7] <- 0
XC[i,18] <- results_may$solution[1]
XC[i,29] <- results_may$solution[2]
XC[i,40] <- results_may$solution[3]
XC[i,51] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,51]
#for june
f.obj <- c((data$jun_peak[i]*price_inc-5.5), (data$jun_ubase[i]*price_inc-5.5), (data$jun_lbase[i]*price_inc-5.5), ((data$roy_crop[i]/11-17.35)))
f.rhs <- c(600*c*eff, gin*eff, 150*c*eff, 150*c*eff, 300*c*eff, 672*m*eff)
results_jun <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_jun$solution[1]+results_jun$solution[2]+results_jun$solution[3]+results_jun$solution[4])*1/eff
XC[i,8] <- results_jun$solution[1]
XC[i,19] <- results_jun$solution[2]
XC[i,30] <- results_jun$solution[3]
XC[i,41] <- results_jun$solution[4]
XC[i,52] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,52]
#for july
f.obj <- c((data$jul_peak[i]*price_inc-5.5), (data$jul_ubase[i]*price_inc-5.5), (data$jul_lbase[i]*price_inc-5.5), ((data$roy_crop[i]/11-17.35)))
f.rhs <- c(620*c*eff, gin*eff, 155*c*eff, 155*c*eff, 310*c*eff, 672*m*eff)
results_jul <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_jul$solution[1]+results_jul$solution[2]+results_jul$solution[3]+results_jul$solution[4])*1/eff
XC[i,9] <- results_jul$solution[1]
XC[i,20] <- results_jul$solution[2]
XC[i,31] <- results_jul$solution[3]
XC[i,42] <- results_jul$solution[4]
XC[i,53] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,53]
#for august
f.obj <- c((data$aug_peak[i]*price_inc-5.5), (data$aug_ubase[i]*price_inc-5.5), (data$aug_lbase[i]*price_inc-5.5), ((data$roy_crop[i]/11-17.35)))
f.rhs <- c(610*c*eff, gin*eff, 150*c*eff, 150*c*eff, 300*c*eff, 672*m*eff)
results_aug <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_aug$solution[1]+results_aug$solution[2]+results_aug$solution[3]+results_aug$solution[4])*1/eff
XC[i,10] <- results_aug$solution[1]
XC[i,21] <- results_aug$solution[2]
XC[i,32] <- results_aug$solution[3]
XC[i,43] <- results_aug$solution[4]
XC[i,54] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,54]
#for september
f.obj <- c((data$sep_peak[i]*price_inc-5.5), (data$sep_ubase[i]*price_inc-5.5), (data$sep_lbase[i]*price_inc-5.5), ((data$roy_crop[i]/11-17.35)))
f.rhs <- c(300*c*eff, gin*eff, 75*c*eff, 75*c*eff, 150*c*eff, 336*m*eff)
results_sep <- lp("max", f.obj, f.con, f.dir, f.rhs)
total <- as.numeric(results_sep$solution[1]+results_sep$solution[2]+results_sep$solution[3]+results_sep$solution[4])*1/eff
XC[i,11] <- results_sep$solution[1]
XC[i,22] <- results_sep$solution[2]
XC[i,33] <- results_sep$solution[3]
XC[i,44] <- results_sep$solution[4]
XC[i,55] <- as.numeric(format(round(gin-total, 3), nsmall=3))
gin <- XC[i,55]
}
)
XC <- as.data.frame(XC)
summary(XC)
XC$extra_profit <- XC$V55*10
XC$V48 <- XC$V48-XC$V55
XC$V49 <- XC$V49-XC$V55
XC$V50 <- XC$V50-XC$V55
XC$V51 <- XC$V51-XC$V55
XC$V52 <- XC$V52-XC$V55
XC$V53 <- XC$V53-XC$V55
XC$V54 <- XC$V54-XC$V55
XC$V55 <- XC$V55-XC$V55
XC$cost <- XC$V45+XC$V46+XC$V47+XC$V48+XC$V49+XC$V50+XC$V51+XC$V52+XC$V53+XC$V54+XC$V55
price_mat <- matrix(c(c(data$dec_peak*price_inc-5.5), c(data$jan_peak*price_inc-5.5), c(data$feb_peak*price_inc-5.5), c(data$mar_peak*price_inc-5.5), c(rep(0, n)),
c(rep(0, n)), c(rep(0, n)), c(data$jun_peak*price_inc-5.5), c(data$jul_peak*price_inc-5.5), c(data$aug_peak*price_inc-5.5), c(data$sep_peak*price_inc-5.5),
c(data$dec_ubase*price_inc-5.5), c(data$jan_ubase*price_inc-5.5), c(data$feb_ubase*price_inc-5.5), c(data$mar_ubase*price_inc-5.5), c(data$mar_ubase*price_inc-5.5),
c(data$apr_ubase*price_inc-5.5), c(data$may_ubase*price_inc-5.5), c(data$jun_ubase*price_inc-5.5), c(data$jul_ubase*price_inc-5.5), c(data$aug_ubase*price_inc-5.5),
c(data$sep_ubase*price_inc-5.5),
c(data$dec_lbase*price_inc-5.5), c(data$jan_lbase*price_inc-5.5), c(data$feb_lbase*price_inc-5.5), c(data$mar_lbase*price_inc-5.5), c(data$mar_lbase*price_inc-5.5),
c(data$apr_lbase*price_inc-5.5), c(data$may_lbase*price_inc-5.5), c(data$jun_lbase*price_inc-5.5), c(data$jul_lbase*price_inc-5.5), c(data$aug_lbase*price_inc-5.5),
c(data$sep_lbase*price_inc-5.5),
c(data$winter_crop/11-17.35), c(data$winter_crop/11-17.35), c(data$winter_crop/11-17.35), c(data$summer_crop/11-17.35),
c(data$summer_crop/11-17.35), c(data$summer_crop/11-17.35), c(data$summer_crop/11-17.35), c(data$roy_crop/11-17.35),
c(data$roy_crop/11-17.35), c(data$roy_crop/11-17.35), c(data$roy_crop/11-17.35)), nrow=n, ncol=44, byrow=FALSE)
prod_mat <- as.matrix(XC[, -c(45:ncol(XC))])
XC$profit <- rowSums(price_mat*prod_mat)-37645*m-0.100385*(640000+(4000000/(1.2*c+5)))*c+XC$extra_profit-XC$cost-extra_fc
XC$electricity <- ifelse(c==0, 0, ifelse(c==1, 1285161, ifelse(c==2, 2300255, ifelse(c==3, 3233510, ifelse(c==4, 4108624,
ifelse(c==5, 4960041, ifelse(c==6, 5770701, ifelse(c==7, 6559135, ifelse(c==8, 7336343, 8104855)))))))))
XC$ammonia <- ifelse(m==0, 0, ifelse(m==1, 350000, ifelse(m==2, 700000, ifelse(m==3, 1050000, ifelse(m==4, 1400000, 1750000)))))
XC$roic <- XC$profit/((XC$electricity+XC$ammonia)*0.25)
XC$loss <- ifelse(XC$profit<0, 1, 0)
XC$roic100 <- ifelse(XC$roic>=1, 1, 0)
assign(paste("XC", c, m, sep = ""), XC)
XC %>% filter(between(profit, quantile(profit, 0.00), quantile(profit, 0.95))) -> XC_new
#profit table reporting average annual profit and ROIC
profit_table <- data.frame(Model=paste0("C=", c, ", M=", m), MWe=c, Ammonia=m, Ave_ROIC=mean(XC$roic)*100,
Prob_loss=mean(XC$loss)*100, Prob_ROIC=mean(XC$roic100)*100, Mean_profit=mean(XC$profit),
SD_profit=sd(XC$profit), Extra=mean(XC$extra_profit), Cost=mean(XC$cost),
Ave_ROIC_95=mean(XC_new$roic)*100, Prob_loss_95=mean(XC_new$loss)*100,
Prob_ROIC_95=mean(XC_new$roic100)*100, Mean_profit_95=mean(XC_new$profit), SD_profit_95=sd(XC_new$profit))
profit_table
#production table reporting average annual electricity and ammonia production
prod_table <- data.frame(dec=mean(colMeans(XC[, c(1,12,23)])), dec=mean(XC[, c(34)])/11,
jan=mean(colMeans(XC[, c(2,13,24)])), jan=mean(XC[, c(35)])/11,
feb=mean(colMeans(XC[, c(3,14,25)])), feb=mean(XC[, c(36)])/11,
mar1=mean(colMeans(XC[, c(4,15,26)])), mar1=mean(XC[, c(37)])/11,
mar2=mean(colMeans(XC[, c(5,16,27)])), mar2=mean(XC[, c(38)])/11,
apr=mean(colMeans(XC[, c(6,17,28)])), apr=mean(XC[, c(39)])/11,
may=mean(colMeans(XC[, c(7,18,29)])), may=mean(XC[, c(40)])/11,
jun=mean(colMeans(XC[, c(8,19,30)])), jun=mean(XC[, c(41)])/11,
jul=mean(colMeans(XC[, c(9,20,31)])), jul=mean(XC[, c(42)])/11,
aug=mean(colMeans(XC[, c(10,21,32)])), aug=mean(XC[, c(43)])/11,
sep=mean(colMeans(XC[, c(11,22,33)])), sep=mean(XC[, c(44)])/11)
prod_table
year <- rep(1:833, each=12)
year <- append(year, c(2,6,9,12))
set.seed(12345)
year <- sample(year)
XC$year <- year
XC_group = XC %>% group_by(year) %>%
summarise(profit = sum(profit)*0.3757,
#roic = sum(profit)*0.3757/(XC$electricity[1]*0.25+XC$ammonia[1]*0.25),
n = n())
XC_group$roic <- 100*XC_group$profit/(XC$electricity[1]*0.25+XC$ammonia[1]*0.25)
#cumulative profit table reporting average profit and ROIC over a 12-year period
agg_table <- data.frame(Model=paste0("C=", c, ", M=", m), Ave_Profit=mean(XC_group$profit), SD_Profit=sd(XC_group$profit),
Ave_ROIC=mean(XC_group$roic), ROIC0=nrow(subset(XC_group, roic<0)), ROIC100=nrow(subset(XC_group, roic>=0 & roic<250)),
ROIC200=nrow(subset(XC_group, roic>=250 & roic<500)), ROIC300=nrow(subset(XC_group, roic>=500)))
agg_table