-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathff23.rs
286 lines (245 loc) · 7.77 KB
/
ff23.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use num::Integer;
use std::ops::{Add, Mul, Neg, Sub};
/// finite field 𝔽23 is the list of numbers 0 through 22
/// Note: this is a very simple and naive implementation
#[derive(Debug)]
pub struct FiniteField23Point {
value: u8,
}
impl FiniteField23Point {
pub fn min() -> Self {
Self { value: 0 }
}
pub fn max() -> Self {
Self { value: 22 }
}
pub(crate) fn try_new(value: u8) -> Result<Self, &'static str> {
if value < 23 {
Ok(Self { value })
} else {
Err("Higher than 23")
}
}
fn new(value: u8) -> Self {
if value < 23 {
Self { value }
} else {
panic!("Cannot init a Finite Field 23 Point with value higher than 22");
}
}
fn multiplication_inverse(&self) -> Self {
// from: https://curves.xargs.org/inverse23.html
let res: u8 = match self.value {
1 => 1, // 1 × 1 = 1 mod 23 = 1
2 => 12, // 2 × 12 = 24 mod 23 = 1
3 => 8, // 3 × 8 = 24 mod 23 = 1
4 => 6, // 4 × 6 = 24 mod 23 = 1
5 => 14, // 5 × 14 = 70 mod 23 = 1
6 => 4, // 6 × 4 = 24 mod 23 = 1
7 => 10, // 7 × 10 = 70 mod 23 = 1
8 => 3, // 8 × 3 = 24 mod 23 = 1
9 => 18, // 9 × 18 = 162 mod 23 = 1
10 => 7, // 10 × 7 = 70 mod 23 = 1
11 => 21, // 11 × 21 = 231 mod 23 = 1
12 => 2, // 12 × 2 = 24 mod 23 = 1
13 => 16, // 13 × 16 = 208 mod 23 = 1
14 => 5, // 14 × 5 = 70 mod 23 = 1
15 => 20, // 15 × 20 = 300 mod 23 = 1
16 => 13, // 16 × 13 = 208 mod 23 = 1
17 => 19, // 17 × 19 = 323 mod 23 = 1
18 => 9, // 18 × 9 = 162 mod 23 = 1
19 => 17, // 19 × 17 = 323 mod 23 = 1
20 => 15, // 20 × 15 = 300 mod 23 = 1
21 => 11, // 21 × 11 = 231 mod 23 = 1
22 => 22, // 22 × 22 = 484 mod 23 = 1
_ => {
unreachable!()
}
};
FiniteField23Point::new(res)
}
fn square_root(&self) -> Option<(Self, Self)> {
// Definition for: sqrt(n)
// sqrt(n) * sqrt(n) = n
let res: Option<(u8, u8)> = match self.value {
0 => Some((0, 0)),
1 => Some((1, 22)),
2 => Some((5, 18)),
3 => Some((7, 16)),
4 => Some((2, 21)),
5 => None,
6 => Some((11, 12)),
7 => None,
8 => Some((10, 13)),
9 => Some((3, 20)),
10 => None,
11 => None,
12 => Some((9, 14)),
13 => Some((6, 17)),
14 => None,
15 => None,
16 => Some((4, 19)),
17 => None,
18 => Some((8, 15)),
19 => None,
20 => None,
21 => None,
22 => None,
_ => unreachable!(),
};
res.map(|(v1, v2)| (FiniteField23Point::new(v1), FiniteField23Point::new(v2)))
}
}
impl Add for FiniteField23Point {
type Output = Self;
fn add(self, other: Self) -> Self {
Self {
value: (self.value + other.value).mod_floor(&23),
}
}
}
impl Sub for FiniteField23Point {
type Output = Self;
fn sub(self, other: Self) -> Self {
// safe to unwrap -> [0; 22]
let v1 = i8::try_from(self.value).unwrap();
// safe to unwrap -> [0; 22]
let v2 = i8::try_from(other.value).unwrap();
let v = (v1 - v2).mod_floor(&23);
Self {
// Safe to unwrap as the result of the subtract is modulo 23
value: u8::try_from(v).unwrap(),
}
}
}
/*
impl Mul for &FiniteField23Point {
type Output = Self;
fn mul(self, other: &Self) -> Self {
// Need to use u16 here as 22*22 = 484
let v1 = u16::from(self.value);
let v2 = u16::from(other.value);
let v = (v1 * v2).mod_floor(&23);
Self {
// Safe to unwrap as the result of the multiplication is module 23
value: u8::try_from(v).unwrap(),
}
}
}
*/
impl Mul for FiniteField23Point {
type Output = Self;
fn mul(self, other: Self) -> Self {
// Need to use u16 here as 22*22 = 484
let v1 = u16::from(self.value);
let v2 = u16::from(other.value);
let v = (v1 * v2).mod_floor(&23);
Self {
// Safe to unwrap as the result of the multiplication is module 23
value: u8::try_from(v).unwrap(),
}
}
}
impl Mul for &FiniteField23Point {
type Output = FiniteField23Point;
fn mul(self, other: &Self::Output) -> Self::Output {
// Need to use u16 here as 22*22 = 484
let v1 = u16::from(self.value);
let v2 = u16::from(other.value);
let v = (v1 * v2).mod_floor(&23);
FiniteField23Point {
// Safe to unwrap as the result of the multiplication is module 23
value: u8::try_from(v).unwrap(),
}
}
}
impl Neg for FiniteField23Point {
type Output = Self;
fn neg(self) -> Self::Output {
// Definition for: -n
// n + (-n) = 0
// safe to unwrap -> [0; 22]
let v1 = i8::try_from(self.value).unwrap();
let v2 = 23;
let v = (v2 - v1).mod_floor(&23);
Self {
// Safe to unwrap as the result of the subtract is modulo 23
value: u8::try_from(v).unwrap(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
impl PartialEq for FiniteField23Point {
fn eq(&self, other: &Self) -> bool {
self.value == other.value
}
}
#[test]
fn test_ff23_add() {
assert_eq!(
FiniteField23Point::new(22) + FiniteField23Point::new(12),
FiniteField23Point::new(11)
);
assert_eq!(
FiniteField23Point::new(22) + FiniteField23Point::new(19),
FiniteField23Point::new(18)
);
}
#[test]
fn test_ff23_sub() {
assert_eq!(
FiniteField23Point::min() - FiniteField23Point::new(18),
FiniteField23Point::new(5)
);
assert_eq!(
FiniteField23Point::new(1) - FiniteField23Point::new(22),
FiniteField23Point::new(2)
);
assert_eq!(
FiniteField23Point::new(18) - FiniteField23Point::new(20),
FiniteField23Point::new(21)
);
}
#[test]
fn test_ff23_mul() {
assert_eq!(
FiniteField23Point::new(21) * FiniteField23Point::new(14),
FiniteField23Point::new(18)
);
assert_eq!(
FiniteField23Point::new(16) * FiniteField23Point::new(22),
FiniteField23Point::new(7)
);
assert_eq!(
FiniteField23Point::new(15) * FiniteField23Point::new(8),
FiniteField23Point::new(5)
);
}
#[test]
fn test_ff23_neg() {
assert_eq!(-FiniteField23Point::new(20), FiniteField23Point::new(3));
assert_eq!(-FiniteField23Point::new(6), FiniteField23Point::new(17));
assert_eq!(-FiniteField23Point::new(8), FiniteField23Point::new(15));
assert_eq!(-FiniteField23Point::new(10), FiniteField23Point::new(13));
}
#[test]
fn test_multiplication_inverse() {
for i in 1..22 {
let v = FiniteField23Point::new(i);
let iv = v.multiplication_inverse();
assert_eq!(v * iv, FiniteField23Point::new(1));
}
}
#[test]
fn test_square_roots() {
for i in 1..22 {
let v = FiniteField23Point::new(i);
if let Some((v_sqr_1, v_sqr_2)) = v.square_root() {
assert_eq!(&v_sqr_1 * &v_sqr_1, v);
assert_eq!(&v_sqr_2 * &v_sqr_2, v);
}
}
}
}