|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "Using TensorFlow backend.\n", |
| 13 | + "c:\\users\\suran\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", |
| 14 | + " from ._conv import register_converters as _register_converters\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "import os\n", |
| 20 | + "os.environ['CUDA_VISIBLE_DEVICES'] = ''\n", |
| 21 | + "import numpy as np\n", |
| 22 | + "from sklearn.model_selection import train_test_split\n", |
| 23 | + "from keras.models import Sequential, save_model\n", |
| 24 | + "from keras.optimizers import Adam\n", |
| 25 | + "from keras.callbacks import ModelCheckpoint\n", |
| 26 | + "from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten\n", |
| 27 | + "from utils import INPUT_SHAPE, generate_dataset" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 2, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "data_X, data_Y = generate_dataset()" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 3, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "X_train, X_test, Y_train, Y_test = train_test_split(data_X, data_Y, test_size = 0.2 )" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 4, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "X_train = X_train/255.0\n", |
| 55 | + "X_test = X_test/255.0" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 5, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [ |
| 63 | + { |
| 64 | + "name": "stdout", |
| 65 | + "output_type": "stream", |
| 66 | + "text": [ |
| 67 | + "(6251, 66, 200, 3) (1563, 66, 200, 3)\n", |
| 68 | + "(6251,) (1563,)\n" |
| 69 | + ] |
| 70 | + } |
| 71 | + ], |
| 72 | + "source": [ |
| 73 | + "print (X_train.shape, X_test.shape)\n", |
| 74 | + "print (Y_train.shape, Y_test.shape)" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 6, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [ |
| 82 | + { |
| 83 | + "name": "stdout", |
| 84 | + "output_type": "stream", |
| 85 | + "text": [ |
| 86 | + "WARNING:tensorflow:From c:\\users\\suran\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:968: calling reduce_prod (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.\n", |
| 87 | + "Instructions for updating:\n", |
| 88 | + "keep_dims is deprecated, use keepdims instead\n", |
| 89 | + "____________________________________________________________________________________________________\n", |
| 90 | + "Layer (type) Output Shape Param # Connected to \n", |
| 91 | + "====================================================================================================\n", |
| 92 | + "convolution2d_1 (Convolution2D) (None, 31, 98, 24) 1824 convolution2d_input_1[0][0] \n", |
| 93 | + "____________________________________________________________________________________________________\n", |
| 94 | + "convolution2d_2 (Convolution2D) (None, 14, 47, 36) 21636 convolution2d_1[0][0] \n", |
| 95 | + "____________________________________________________________________________________________________\n", |
| 96 | + "convolution2d_3 (Convolution2D) (None, 5, 22, 48) 43248 convolution2d_2[0][0] \n", |
| 97 | + "____________________________________________________________________________________________________\n", |
| 98 | + "convolution2d_4 (Convolution2D) (None, 3, 20, 64) 27712 convolution2d_3[0][0] \n", |
| 99 | + "____________________________________________________________________________________________________\n", |
| 100 | + "convolution2d_5 (Convolution2D) (None, 1, 18, 64) 36928 convolution2d_4[0][0] \n", |
| 101 | + "____________________________________________________________________________________________________\n", |
| 102 | + "dropout_1 (Dropout) (None, 1, 18, 64) 0 convolution2d_5[0][0] \n", |
| 103 | + "____________________________________________________________________________________________________\n", |
| 104 | + "flatten_1 (Flatten) (None, 1152) 0 dropout_1[0][0] \n", |
| 105 | + "____________________________________________________________________________________________________\n", |
| 106 | + "dense_1 (Dense) (None, 100) 115300 flatten_1[0][0] \n", |
| 107 | + "____________________________________________________________________________________________________\n", |
| 108 | + "dense_2 (Dense) (None, 50) 5050 dense_1[0][0] \n", |
| 109 | + "____________________________________________________________________________________________________\n", |
| 110 | + "dense_3 (Dense) (None, 10) 510 dense_2[0][0] \n", |
| 111 | + "____________________________________________________________________________________________________\n", |
| 112 | + "dense_4 (Dense) (None, 1) 11 dense_3[0][0] \n", |
| 113 | + "====================================================================================================\n", |
| 114 | + "Total params: 252,219\n", |
| 115 | + "Trainable params: 252,219\n", |
| 116 | + "Non-trainable params: 0\n", |
| 117 | + "____________________________________________________________________________________________________\n" |
| 118 | + ] |
| 119 | + } |
| 120 | + ], |
| 121 | + "source": [ |
| 122 | + "model = Sequential()\n", |
| 123 | + "model.add(Conv2D(24, 5, 5, activation='relu',input_shape = INPUT_SHAPE, subsample=(2, 2)))\n", |
| 124 | + "model.add(Conv2D(36, 5, 5, activation='relu', subsample=(2, 2)))\n", |
| 125 | + "model.add(Conv2D(48, 5, 5, activation='relu', subsample=(2, 2)))\n", |
| 126 | + "model.add(Conv2D(64, 3, 3, activation='relu'))\n", |
| 127 | + "model.add(Conv2D(64, 3, 3, activation='relu'))\n", |
| 128 | + "model.add(Dropout(0.5))\n", |
| 129 | + "model.add(Flatten())\n", |
| 130 | + "model.add(Dense(100, activation='relu'))\n", |
| 131 | + "model.add(Dense(50, activation='relu'))\n", |
| 132 | + "model.add(Dense(10, activation='relu'))\n", |
| 133 | + "model.add(Dense(1))\n", |
| 134 | + "model.summary()" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 7, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [ |
| 142 | + { |
| 143 | + "name": "stdout", |
| 144 | + "output_type": "stream", |
| 145 | + "text": [ |
| 146 | + "WARNING:tensorflow:From c:\\users\\suran\\appdata\\local\\programs\\python\\python36\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:996: calling reduce_mean (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.\n", |
| 147 | + "Instructions for updating:\n", |
| 148 | + "keep_dims is deprecated, use keepdims instead\n" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "checkpoint = ModelCheckpoint('model-{val_loss:.4f}.h5',\n", |
| 154 | + " monitor='val_loss',\n", |
| 155 | + " verbose=0,\n", |
| 156 | + " save_best_only=True,\n", |
| 157 | + " mode='auto')\n", |
| 158 | + "model.compile(loss='mean_squared_error', optimizer=Adam(lr=1.0e-4))" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": 9, |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "name": "stdout", |
| 168 | + "output_type": "stream", |
| 169 | + "text": [ |
| 170 | + "Train on 6251 samples, validate on 1563 samples\n", |
| 171 | + "Epoch 1/30\n", |
| 172 | + "6251/6251 [==============================] - 22s - loss: 0.0240 - val_loss: 0.0270\n", |
| 173 | + "Epoch 2/30\n", |
| 174 | + "6251/6251 [==============================] - 21s - loss: 0.0235 - val_loss: 0.0259\n", |
| 175 | + "Epoch 3/30\n", |
| 176 | + "6251/6251 [==============================] - 21s - loss: 0.0221 - val_loss: 0.0252\n", |
| 177 | + "Epoch 4/30\n", |
| 178 | + "6251/6251 [==============================] - 22s - loss: 0.0213 - val_loss: 0.0229\n", |
| 179 | + "Epoch 5/30\n", |
| 180 | + "6251/6251 [==============================] - 22s - loss: 0.0206 - val_loss: 0.0223\n", |
| 181 | + "Epoch 6/30\n", |
| 182 | + "6251/6251 [==============================] - 21s - loss: 0.0201 - val_loss: 0.0236\n", |
| 183 | + "Epoch 7/30\n", |
| 184 | + "6251/6251 [==============================] - 21s - loss: 0.0200 - val_loss: 0.0230\n", |
| 185 | + "Epoch 8/30\n", |
| 186 | + "6251/6251 [==============================] - 22s - loss: 0.0197 - val_loss: 0.0226\n", |
| 187 | + "Epoch 9/30\n", |
| 188 | + "6251/6251 [==============================] - 23s - loss: 0.0196 - val_loss: 0.0224\n", |
| 189 | + "Epoch 10/30\n", |
| 190 | + "6251/6251 [==============================] - 23s - loss: 0.0194 - val_loss: 0.0224\n", |
| 191 | + "Epoch 11/30\n", |
| 192 | + "6251/6251 [==============================] - 21s - loss: 0.0193 - val_loss: 0.0220\n", |
| 193 | + "Epoch 12/30\n", |
| 194 | + "6251/6251 [==============================] - 25s - loss: 0.0191 - val_loss: 0.0216\n", |
| 195 | + "Epoch 13/30\n", |
| 196 | + "6251/6251 [==============================] - 21s - loss: 0.0191 - val_loss: 0.0219\n", |
| 197 | + "Epoch 14/30\n", |
| 198 | + "6251/6251 [==============================] - 25s - loss: 0.0189 - val_loss: 0.0217\n", |
| 199 | + "Epoch 15/30\n", |
| 200 | + "6251/6251 [==============================] - 21s - loss: 0.0187 - val_loss: 0.0212\n", |
| 201 | + "Epoch 16/30\n", |
| 202 | + "6251/6251 [==============================] - 24s - loss: 0.0186 - val_loss: 0.0217\n", |
| 203 | + "Epoch 17/30\n", |
| 204 | + "6251/6251 [==============================] - 24s - loss: 0.0184 - val_loss: 0.0215\n", |
| 205 | + "Epoch 18/30\n", |
| 206 | + "6251/6251 [==============================] - 25s - loss: 0.0183 - val_loss: 0.0215\n", |
| 207 | + "Epoch 19/30\n", |
| 208 | + "6251/6251 [==============================] - 21s - loss: 0.0182 - val_loss: 0.0211\n", |
| 209 | + "Epoch 20/30\n", |
| 210 | + "6251/6251 [==============================] - 23s - loss: 0.0178 - val_loss: 0.0208\n", |
| 211 | + "Epoch 21/30\n", |
| 212 | + "6251/6251 [==============================] - 24s - loss: 0.0175 - val_loss: 0.0210\n", |
| 213 | + "Epoch 22/30\n", |
| 214 | + "6251/6251 [==============================] - 22s - loss: 0.0177 - val_loss: 0.0208\n", |
| 215 | + "Epoch 23/30\n", |
| 216 | + "6251/6251 [==============================] - 22s - loss: 0.0175 - val_loss: 0.0211\n", |
| 217 | + "Epoch 24/30\n", |
| 218 | + "6251/6251 [==============================] - 26s - loss: 0.0173 - val_loss: 0.0213\n", |
| 219 | + "Epoch 25/30\n", |
| 220 | + "6251/6251 [==============================] - 24s - loss: 0.0173 - val_loss: 0.0209\n", |
| 221 | + "Epoch 26/30\n", |
| 222 | + "6251/6251 [==============================] - 23s - loss: 0.0170 - val_loss: 0.0206\n", |
| 223 | + "Epoch 27/30\n", |
| 224 | + "6251/6251 [==============================] - 22s - loss: 0.0168 - val_loss: 0.0209\n", |
| 225 | + "Epoch 28/30\n", |
| 226 | + "6251/6251 [==============================] - 23s - loss: 0.0166 - val_loss: 0.0219\n", |
| 227 | + "Epoch 29/30\n", |
| 228 | + "6251/6251 [==============================] - 24s - loss: 0.0166 - val_loss: 0.0207\n", |
| 229 | + "Epoch 30/30\n", |
| 230 | + "6251/6251 [==============================] - 22s - loss: 0.0163 - val_loss: 0.0207\n" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "data": { |
| 235 | + "text/plain": [ |
| 236 | + "<keras.callbacks.History at 0x18455984748>" |
| 237 | + ] |
| 238 | + }, |
| 239 | + "execution_count": 9, |
| 240 | + "metadata": {}, |
| 241 | + "output_type": "execute_result" |
| 242 | + } |
| 243 | + ], |
| 244 | + "source": [ |
| 245 | + "model.fit( X_train, Y_train, batch_size=32, nb_epoch=30, validation_data=(X_test, Y_test),callbacks=[checkpoint], shuffle=True )" |
| 246 | + ] |
| 247 | + } |
| 248 | + ], |
| 249 | + "metadata": { |
| 250 | + "kernelspec": { |
| 251 | + "display_name": "Python 3", |
| 252 | + "language": "python", |
| 253 | + "name": "python3" |
| 254 | + }, |
| 255 | + "language_info": { |
| 256 | + "codemirror_mode": { |
| 257 | + "name": "ipython", |
| 258 | + "version": 3 |
| 259 | + }, |
| 260 | + "file_extension": ".py", |
| 261 | + "mimetype": "text/x-python", |
| 262 | + "name": "python", |
| 263 | + "nbconvert_exporter": "python", |
| 264 | + "pygments_lexer": "ipython3", |
| 265 | + "version": "3.6.2" |
| 266 | + } |
| 267 | + }, |
| 268 | + "nbformat": 4, |
| 269 | + "nbformat_minor": 2 |
| 270 | +} |
0 commit comments