-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_file.py
40 lines (32 loc) · 1.25 KB
/
example_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# Generate a synthetic regression dataset with 500 samples and 12 features
X, y = make_regression(n_samples=500, n_features=12, noise=0.1, random_state=42)
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define stacking layers
# Define models for each layer (for regression)
layer1 = [LinearRegression(), RandomForestRegressor(n_estimators=100, random_state=42)]
layer2 = [
RandomForestRegressor(n_estimators=50, random_state=42),
LinearRegression(),
RandomForestRegressor(n_estimators=200, random_state=42)
]
layer3 = [XGBRegressor(random_state=42), XGBRegressor(random_state=42)]
# Define the meta model
meta_model = LinearRegression()
# Combine layers into a list
layers = [layer1,
layer2, layer3
]
# Initialize and train Stacking Model
model = StackingEnsemble(layers= layers, meta_model=meta_model)
model.fit(X_train, y_train)
# Print the structure of the stacking model
model.print_structure()
# Make predictions
predictions = model.predict(X_test)
print("Predictions: ", predictions[:10])