forked from MgArcher/Text_select_captcha
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
101 lines (79 loc) · 2.39 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@author: jiajia
@file: demo.py
@time: 2020/8/13 13:44
"""
import time
from PIL import Image
import matplotlib.pyplot as plt
from src import orientation
from src import discern
from src import word_order
# plt.rcParams['font.family'] = ['STFangsong']
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
def to_selenium(res):
place = []
title = [i['content'] for i in res if i['classes'] == "title"][0]
for t in title:
for item in res:
if item['classes'] == "target":
x1, y1, x2, y2 = item['crop']
if item['content'] == t:
place.append(
{
"text": t,
"place": [(x1 + x2)/2, (y1 + y2)/2]
}
)
return place
def draw(img_path, data):
"绘制识别结果"
image = Image.open(img_path)
# matrix = numpy.asarray(image)
plt.imshow(image, interpolation='none')
current_axis = plt.gca()
for box_ in data:
box = box_['crop']
x1, y1, x2, y2 = box
box_w = x2 - x1
box_h = y2 - y1
current_axis.add_patch(
plt.Rectangle((x1, y1), box_w, box_h, color='blue', fill=False, linewidth=2))
plt.text(
x1,
y1,
s=box_['content'],
color="white",
verticalalignment="top",
bbox={"color": "black", "pad": 0},
)
plt.show()
def run_click(path):
"""方式一"""
return discern.text_predict(orientation.location_predict(path), path)
def run_word_order(path):
"""方式二"""
return word_order.text_predict(orientation.location_predict(path), path)
if __name__ == "__main__":
path = "test/3.jpg"
start = time.time()
res = run_click(path)
print(res)
print("识别耗时为:", time.time() - start)
res = run_word_order(path)
draw(path, res)
print(res)
print("识别耗时为:", time.time() - start)
draw(path, res)
# import os
# for f in os.scandir('test'):
# print(f.path)
# path = f.path
# s = time.time()
# res = run_word_order(path)
# print(res)
# print("识别耗时为:", time.time() - s)
# draw(path, res)