Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit 9f78e9e

Browse files
committedJan 31, 2020
Merge branch 'feature_WND_io'
2 parents db2613f + 14bf080 commit 9f78e9e

27 files changed

+85818
-3
lines changed
 
51.9 KB
Loading

‎Unsteady_NACA0012/images/airfoil.png

57.9 KB
Loading
48.6 KB
Loading

‎Unsteady_NACA0012/images/flow1.png

971 KB
Loading
38.2 KB
Loading
45.8 KB
Loading

‎Unsteady_NACA0012/images/wndFcts.png

35.9 KB
Loading
1.89 MB
Binary file not shown.
1.89 MB
Binary file not shown.
1.89 MB
Binary file not shown.
Lines changed: 226 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,226 @@
1+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2+
% %
3+
% SU2 configuration file %
4+
% Case description: Unsteady periodic detached NACA0012 simulation %
5+
% Author: Steffen Schotthöfer %
6+
% Institution: TU Kaiserslautern %
7+
% Date: Jan 21, 2020 %
8+
% File Version 7.0.1 "Blackbird" (or newer) %
9+
% %
10+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11+
12+
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
13+
%
14+
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
15+
%
16+
SOLVER= RANS
17+
%
18+
% Specify turbulent model (NONE, SA, SA_NEG, SST)
19+
KIND_TURB_MODEL= SA
20+
%
21+
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
22+
MATH_PROBLEM= DIRECT
23+
%
24+
% ------------------------- UNSTEADY SIMULATION -------------------------------%
25+
%
26+
TIME_DOMAIN = YES
27+
%
28+
% Numerical Method for Unsteady simulation(NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)
29+
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
30+
%
31+
% Time Step for dual time stepping simulations (s)
32+
TIME_STEP= 5e-4
33+
%
34+
% Maximum Number of physical time steps.
35+
TIME_ITER= 2200
36+
%
37+
% Number of internal iterations (dual time method)
38+
INNER_ITER= 50
39+
%
40+
% Restart after the transient phase has passed
41+
RESTART_SOL = YES
42+
%
43+
% Specify unsteady restart iter
44+
RESTART_ITER = 499
45+
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
46+
%
47+
% Mach number (non-dimensional, based on the free-stream values)
48+
MACH_NUMBER= 0.3
49+
%
50+
% Angle of attack (degrees, only for compressible flows)
51+
AOA= 17.0
52+
%
53+
% De-Dimensionalization
54+
REF_DIMENSIONALIZATION = DIMENSIONAL
55+
%
56+
% Free-stream temperature (288.15 K by default)
57+
FREESTREAM_TEMPERATURE= 293.0
58+
%
59+
% Reynolds number (non-dimensional, based on the free-stream values)
60+
REYNOLDS_NUMBER= 1e+3
61+
%
62+
% Reynolds length (1 m by default)
63+
REYNOLDS_LENGTH= 1.0
64+
%
65+
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
66+
%
67+
% Reference origin for moment computation
68+
REF_ORIGIN_MOMENT_X = 0.25
69+
REF_ORIGIN_MOMENT_Y = 0.00
70+
REF_ORIGIN_MOMENT_Z = 0.00
71+
%
72+
% Reference length for pitching, rolling, and yawing non-dimensional moment
73+
REF_LENGTH= 1.0
74+
%
75+
% Reference area for force coefficients (0 implies automatic calculation)
76+
REF_AREA= 1.0
77+
%
78+
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
79+
%
80+
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
81+
MARKER_HEATFLUX= ( airfoil, 0.0)
82+
%
83+
% Farfield boundary marker(s) (NONE = no marker)
84+
MARKER_FAR= ( farfield)
85+
%
86+
% Marker(s) of the surface to be plotted or designed
87+
MARKER_PLOTTING= ( airfoil )
88+
%
89+
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
90+
MARKER_MONITORING= (airfoil)
91+
%
92+
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
93+
%
94+
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
95+
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
96+
%
97+
% Courant-Friedrichs-Lewy condition of the finest grid
98+
CFL_NUMBER= 20.0
99+
%
100+
% Adaptive CFL number (NO, YES)
101+
CFL_ADAPT= NO
102+
%
103+
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
104+
% CFL max value )
105+
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
106+
%
107+
% Runge-Kutta alpha coefficients
108+
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
109+
%
110+
%
111+
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
112+
LINEAR_SOLVER= FGMRES
113+
%
114+
% Min error of the linear solver for the implicit formulation
115+
LINEAR_SOLVER_ERROR= 1E-6
116+
%
117+
% Max number of iterations of the linear solver for the implicit formulation
118+
LINEAR_SOLVER_ITER= 5
119+
%
120+
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
121+
%
122+
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
123+
% TURKEL_PREC, MSW)
124+
CONV_NUM_METHOD_FLOW= JST
125+
%
126+
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
127+
%
128+
% 1st, 2nd and 4th order artificial dissipation coefficients
129+
JST_SENSOR_COEFF= ( 0.5, 0.01 )
130+
%
131+
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
132+
TIME_DISCRE_FLOW= EULER_IMPLICIT
133+
%
134+
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
135+
%
136+
% Convective numerical method (SCALAR_UPWIND)
137+
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
138+
%
139+
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
140+
%
141+
MUSCL_TURB= NO
142+
%
143+
% Time discretization (EULER_IMPLICIT)
144+
TIME_DISCRE_TURB= EULER_IMPLICIT
145+
%
146+
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
147+
%
148+
% Convergence criteria (CAUCHY, RESIDUAL)
149+
CONV_CRITERIA = RESIDUAL
150+
% Field to apply Cauchy Criterion to
151+
CONV_FIELD= REL_RMS_DENSITY
152+
% Min value of the residual (log10 of the residual)
153+
CONV_RESIDUAL_MINVAL= -3
154+
%
155+
%% Time convergence monitoring
156+
WINDOW_CAUCHY_CRIT = YES
157+
%
158+
% List of time convergence fields
159+
CONV_WINDOW_FIELD = (TAVG_DRAG, TAVG_LIFT)
160+
%
161+
% Time Convergence Monitoring starts at Iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
162+
CONV_WINDOW_STARTITER = 0
163+
%
164+
% Epsilon to control the series convergence
165+
CONV_WINDOW_CAUCHY_EPS = 1E-3
166+
%
167+
% Number of elements to apply the criteria
168+
CONV_WINDOW_CAUCHY_ELEMS = 10
169+
%
170+
% Starting iteration for windowed-time-averaging
171+
WINDOW_START_ITER = 500
172+
%
173+
% Window used for reverse sweep. Options (SQUARE, HANN, HANN_SQUARE, BUMP)
174+
WINDOW_FUNCTION = HANN_SQUARE
175+
%
176+
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
177+
%
178+
HISTORY_WRT_FREQ_INNER=0
179+
SCREEN_WRT_FREQ_INNER =1
180+
%
181+
% Mesh input file
182+
MESH_FILENAME= unsteady_naca0012_mesh.su2
183+
%
184+
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
185+
MESH_FORMAT= SU2
186+
%
187+
% Mesh output file
188+
MESH_OUT_FILENAME= mesh_out.su2
189+
%
190+
% Restart flow input file
191+
SOLUTION_FILENAME= restart_flow.dat
192+
%
193+
% Restart adjoint input file
194+
SOLUTION_ADJ_FILENAME= restart_adj.dat
195+
%
196+
% Output file format (PARAVIEW, TECPLOT, STL)
197+
TABULAR_FORMAT= TECPLOT
198+
%
199+
% Output file convergence history (w/o extension)
200+
CONV_FILENAME= 0_history
201+
%
202+
% Output file restart flow
203+
RESTART_FILENAME= restart_flow.dat
204+
%
205+
% Output file restart adjoint
206+
RESTART_ADJ_FILENAME= restart_adj.dat
207+
%
208+
% Output file flow (w/o extension) variables
209+
VOLUME_FILENAME= flow
210+
%
211+
% Output file surface flow coefficient (w/o extension)
212+
SURFACE_FILENAME= surface_flow
213+
%
214+
% Writing solution file frequency
215+
WRT_SOL_FREQ= 1
216+
%
217+
WRT_SOL_FREQ_DUALTIME= 1
218+
%
219+
% Writing convergence history frequency% Writing convergence history frequency (dual time, only written to screen)
220+
WRT_CON_FREQ_DUALTIME= 10
221+
WRT_CON_FREQ= 1
222+
WRT_CSV_SOL=NO
223+
%
224+
SCREEN_OUTPUT=(INNER_ITER, TIME_ITER, DRAG, LIFT, RMS_DENSITY, REL_RMS_DENSITY, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT)
225+
HISTORY_OUTPUT=(ITER,REL_RMS_RES,RMS_RES, AERO_COEFF,TAVG_AERO_COEFF, CAUCHY)
226+
%

0 commit comments

Comments
 (0)