-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslide.tex
1371 lines (1051 loc) · 41 KB
/
slide.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{fdubeamer}
\usepackage{xcolor-material}
\input{definitions}
\def\CreditsData{
buerschaper2009explicit = {
{https://doi.org/10.1103/PhysRevB.79.085119}
{Buerschaper et~al., \textit{Phys. Rev. B} \textbf{79}: 085119 (2009)}
},
nishioka2009holographic = {
{https://doi.org/10.1088/1751-8113/42/50/504008}
{Nishioka et~al., \textit{J. Phys. A: Math. Theor.} \textbf{42}: 504008 (2009)}
},
orus2019tensor = {
{https://doi.org/10.1038/s42254-019-0086-7}
{Orús, \textit{Nat. Rev. Phys.} \textbf{1}: 538--550 (2019)}
},
chen2022exact = {
{https://arxiv.org/abs/2210.12127}
{Chen et~al., arXiv:2210.12127 (2022)}
},
wang2022virasoro = {
{https://doi.org/10.1103/PhysRevB.106.115116}
{Wang et~al., \textit{Phys. Rev. B} \textbf{106}: 115116 (2022)}
},
zeng2023virasoro = {
{https://doi.org/10.1103/PhysRevB.107.245146}
{Zeng et~al., \textit{Phys. Rev. B} \textbf{107}: 245146 (2023)}
},
zeng2023bulk = {
{https://doi.org/10.3390/e25111543}
{Zeng et~al., \textit{Entropy} \textbf{25}: 1543 (2023)}
},
}
\title{Aspects on Tensor Networks for Topological Orders}
\author{Xiangdong Zeng}
\institute{Supervisor: Prof.\ Ling-Yan Hung}
\date{December 15, 2023}
\begin{document}
\maketitle
\begin{frame}{Outline}
\begin{itemize}
\item Motivation and background
\begin{itemize}
\item AdS/CFT correspondence
\item Topological orders and category theory
\item Tensor networks
\end{itemize}
\item Strange correlators and holographic tensor networks
\begin{itemize}
\item Tensor network representation of string-net model
\item Strange correlators and partition functions of minimal CFTs
\item Construction of holographic tensor networks
\item Operator pushing
\end{itemize}
\item Tensor network representations of Virasoro and Kac--Moody algebra
\begin{itemize}
\item Review of 2d CFT
\item Basic construction
\item Examples: Ising, dimer and Fibonacci models
\end{itemize}
\end{itemize}
\end{frame}
\section{Motivation \& background}
\begin{frame}{Motivation: AdS/CFT correspondence}
\begin{columns}[c]
\column{0.6\textwidth}
\begin{itemize}
\item Holographic principle
\item Duality between a gravity theory in AdS\textsubscript{\textit{d}+1} spacetime (bulk) and a CFT\textsubscript{\textit{d}} (boundary)
\item AdS/CFT dictionary:
\begin{itemize}
\item $Z_{\mathrm{CFT}}=Z_{\mathrm{bulk}}$
\end{itemize}
\item Ryu--Takayanagi formula:
\begin{itemize}
\item $S_A = \operatorname{area}(\gamma_A) / 4G^{(d+1)}$
\item Entanglement is geometry
\end{itemize}
\item \textit{p}-adic AdS/CFT and Einstein equation
\end{itemize}
\column{0.4\textwidth}
\centering
\includegraphics[width=0.8\textwidth]{images/rt-formula.pdf}
\end{columns}
\footnotetext{Image credit: \citet{nishioka2009holographic}}
\end{frame}
\begin{frame}{Topological orders}
\begin{itemize}
\item Novel phases of matter beyond Landau's theory
\begin{itemize}
\item Fractional quantum Hall effect
\item High temperature superconductivity
\end{itemize}
\item Fundamental properties:
\begin{itemize}
\item Ground state degeneracy
\item Non-abelian geometric phase
\end{itemize}
\item Microscopic origin:
\begin{itemize}
\item Long-range entanglement
\item Local unitary transformation
\end{itemize}
\item Applications: fault-tolerant quantum computation
\item Mathematical framework: modular tensor categories (fusion categories)
\end{itemize}
\end{frame}
\begin{frame}{Tensor \& fusion categories}
\begin{itemize}
\item Basic of category theory:
\begin{itemize}
\item Objects and morphisms
\item Functors, natural transformations, etc.
\end{itemize}
\item Tensor product: $\otimes$
\begin{itemize}
\item Associativity: $(a\otimes b)\otimes c=a\otimes(b\otimes c)$
\item Unit object: $\1\otimes a=a\otimes\1=a$
\end{itemize}
\item Simple objects and their fusion: $a\otimes b=\bigoplus_c N_{ab}^c c$
\begin{itemize}
\item Simple objects $a,b$: different types of anyon
\item Fusion: can't be distinguished at long distance
\item Fusion coefficients: $N_{ab}^c\in\Z^*$
\item Quantum dimension $d_a$: max eigenvalue of matrix $(N_a)_{bc}=N_{ab}^c$
\end{itemize}
\item More structures: dual, braiding, ribbon, non-degeneracy, etc.
\end{itemize}
\end{frame}
\begin{frame}{Fusion diagrams}
\linespread{1.4}
\selectfont
\begin{columns}[c]
\column{0.6\textwidth}
\begin{itemize}
\item Basis in vector space $\operatorname{Hom}_{\mathcal{C}}(a\otimes b,c)$:
\tikzinput{category/fusion-tree-1}
\item \textit{F}-move:
$\tikzinput{category/f-symbol-1} = \sum_y \, \bigl[ F^{abc}_d \bigr]_{xy} \tikzinput{category/f-symbol-2}$
\item Constraints: pentagon equations
\item Bubble removal: \\
\mbox{\qquad} $\tikzinput{category/loop-removal}$
\end{itemize}
\column{0.4\textwidth}
\centering
\tikzinput{category/f-symbols-pentagon-equation-narrow}
\end{columns}
\end{frame}
\begin{frame}{Examples of fusion categories}
\linespread{1.4}
\selectfont
\begin{itemize}
\item Fibonacci
\begin{itemize}
\item Anyon types: $\{\1, \tau\}$
\item Fusion rules: $\tau\otimes\tau=\1\oplus\tau$
\item Quantum dimensions: $d_{\1}=1, \, d_\tau=\varphi$
\item \textit{F}-symbols:
$
[F^{\tau\tau\tau}_\tau]_{ij} = \frac{1}{\varphi} \Bigl(\begin{smallmatrix} 1 & \sqrt\varphi \\ \sqrt\varphi & -1 \end{smallmatrix}\Bigr), \,
i,j \in \{\1, \tau\}
$
\end{itemize}
\item Ising
\begin{itemize}
\item Anyon types: $\{\1, \sigma, \psi\}$
\item Fusion rules: $\psi\otimes\psi=\1, \, \sigma\otimes\sigma=\1\oplus\psi, \, \psi\otimes\sigma=\sigma$
\item Quantum dimensions: $d_{\1}=d_\psi=1, \, d_\sigma=\sqrt2$
\item \textit{F}-symbols:
$
[F^{\psi\sigma\psi}_\sigma]_{\sigma\sigma} = [F^{\sigma\psi\sigma}_\psi]_{\sigma\sigma} = -1, \,
[F^{\sigma\sigma\sigma}_\sigma]_{ij} = -\frac{1}{\sqrt2} \Bigl(\begin{smallmatrix} 1 & 1 \\[0.5ex] 1 & -1 \end{smallmatrix}\Bigr), \,
i,j \in \{\1, \psi\}
$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{String-net model}
\begin{itemize}
\item Input data
\begin{itemize}
\item Trivalent lattice (e.g.\ honeycomb)
\item Superselection sector (edge): simple objects
\item Branching rules (vertex): fusion rules
\end{itemize}
\item Hamiltonian: $H = -\sum_v A_v - \sum_p B_p$
\begin{itemize}
\item Electric charge:
$A_v \, \ket[\Bigg]{\tikzinput{string-net/fusion-2}} = \delta_{ijk} \, \ket[\Bigg]{\tikzinput{string-net/fusion-2}}$
\item Magnetic flux:
$B_p = \sum_{s=0}^N \frac{d_s}{D^2} B_p^s \, , \quad D = \sqrt{\sum_{s=0}^N d_s^2}$ \\
$
\phantom{\text{Magnetic flux:~}}
B_p^s \, \ket[\Bigg]{\def\Prime{}\tikzinput{string-net/hexagon}}
= \sum_{m,\dots,r} B_{p,ghijkl}^{s,g'h'i'j'k'l'} \,
\ket[\Bigg]{\def\Prime{'}\tikzinput{string-net/hexagon}}
$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Tensor networks}
\begin{columns}[c]
\column{0.6\textwidth}
\begin{itemize}
\item Tensor: a multi-dimensional array
\item Contraction and decomposition (SVD)
\item Why efficient?
\begin{itemize}
\item Only keep the relevant (i.e.\ entanglement) degrees of freedom
\item Area-law: $S\sim\partial A$
\end{itemize}
\item Algorithms:
\begin{itemize}
\item MPS/MPO based: DMRG, TEBD, etc.
\begin{itemize}
\item 2d generalization: PEPS/PEPO
\end{itemize}
\item Coarse-graining: TRG, TNR, HOTRG, etc.
\item MERA: holographic geometry
\end{itemize}
\end{itemize}
\column{0.4\textwidth}
\centering
\tikzinput{tensor-network/tensor-networks}
\end{columns}
\footnotetext{Image credit: \citet{orus2019tensor} (with modification)}
\end{frame}
\section{Strange correlators \& \\ holographic tensor networks}
\begin{frame}{Tensor network representation of string-net model}
\begin{columns}[c]
\column{0.5\textwidth}
\begin{itemize}
\item Construct ground state: is given by
\begin{itemize}
\item Apply $B_p$ on vacuum state $\ket{\diameter}$
\item Weighted by quantum dimensions
\item Use \textit{F}-moves to simplify
\end{itemize}
\item PEPS structure:
\begin{itemize}
\item Virtual indices: summed over \\
\mbox{\qquad} (outside two legs: $\alpha,\beta,\gamma$)
\item Physical indices: left uncontracted
\mbox{\qquad} (inner one leg: $i,j,k$)
\end{itemize}
\item Tetrahedral symmetry: $A_4$ group
\end{itemize}
\column{0.5\textwidth}
\begin{center}
\includegraphics[width=0.7\textwidth]{images/string-net-peps.pdf}
\scriptsize
\setlength{\arraycolsep}{1.5pt}
\tikzset{x=1em, y=1em, node font=\tiny}
\begin{gather*}
\Triangle jki\alpha\beta\gamma
= \frac{1}{D} (d_i d_j d_k)^{-\frac14} (d_\alpha d_\beta d_\gamma)^{-\frac13}
\Tetrahedron ik\gamma\alpha\beta j \\
\bigl[ F^{abc}_d \bigr]_{xy}
= \sqrt{d_x d_y} \begin{bmatrix} a & b & x\, \\ c & d & y\, \end{bmatrix}
= \frac{1}{\sqrt{d_a d_b d_c d_d}} \, \Tetrahedron xbdyca
\end{gather*}
\end{center}
\vspace*{-2em}
\end{columns}
\footnotetext{Image credit: \citet{buerschaper2009explicit}}
\end{frame}
\begin{frame}{Strange correlators}
\begin{itemize}
\item Original definition: $C(r,r') = \langle\Omega|\phi(r)\phi(r')|\Psi\rangle / \langle\Omega|\Psi\rangle$
\begin{itemize}
\item $\ket{\Psi}$: a non-trivial short-range entangled (SPT) state
\item $\ket{\Omega}$: a direct product state
\end{itemize}
\item In string-net model:
\begin{itemize}
\item $\ket{\Psi_\mathrm{SN}}$: PEPS wave function for string-net ground state
\item $\ket{\Omega}$: some specific product state $\ket{\omega}^{\otimes N}$
\item Partition function: $Z = \langle\Omega|\Psi_\mathrm{SN}\rangle = \tikzinput{strange-correlator}$
\begin{itemize}
\item Virtual indices (gray): summed over
\item Physical indices (green): fixed to some certain values (boundary conditions)
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Examples}
\begin{itemize}
\item Fibonacci
\begin{itemize}
\item Boundary conditions: $\ket{\omega}=\ket{\tau}$
\item Building blocks:
\begingroup
\scriptsize
\tikzset{x=1em, y=1em, node font=\tiny}
$
\Triangle \tau\tau\tau\tau\tau\tau
= \varphi^{\frac14} \bigl[ F^{\tau\tau\tau}_\tau \bigr]_{\tau\tau} = -\varphi^{-\frac34}, \,
\Triangle \tau\tau\tau\1\tau\tau
= \varphi^{\frac{7}{12}} \bigl[ F^{\tau\tau\tau}_\tau \bigr]_{\tau\1} = \varphi^{\frac{1}{12}}
$
\endgroup
\end{itemize}
\item Ising
\begin{itemize}
\item Boundary conditions: $\ket{\omega(\beta)} = \sqrt2 \, \bigl( \cosh\beta\ket{\1} + \sinh\beta\ket{\psi} \bigr)$
\item Building blocks:
\begingroup
\scriptsize
\tikzset{x=1em, y=1em, node font=\tiny}
$
A_{ijkl} = \tikzinput{ising/octagon} \enspace \text{where} \enspace
i, j, k, l = \1 \text{ or } \psi, \enspace
\tikzinput{ising/line-sigma} \, = \sigma, \enspace
\tikzinput{ising/line-omega} \, = \omega
$
\endgroup
\item Kramers--Wannier duality: shifted by 1/2 unit \textrightarrow{} $\beta_{\mathrm{c}}=\frac12\log(1+\sqrt{2})$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Holographic tensor networks in 2+1d}
\begin{itemize}
\item $\ket{\Psi}$ is invariant under scaling transformation $\mathcal{H}_{\!\mathcal{C}}$
\item Partition function is also invariant:
$Z = \langle\Omega|\Psi\rangle = \langle\Omega|\exp(z\mathcal{H}_{\!\mathcal{C}})|\Psi\rangle$
\item Eigenvalue problem:
$\bra{\Omega}\exp(z\mathcal{H}_{\!\mathcal{C}}) = \bra{\Omega}FFF\cdots = \bra{\Omega}$
\begin{itemize}
\item Discrete Euclidean AdS space
\end{itemize}
\end{itemize}
\centering
\includegraphics[width=0.5\textwidth]{images/holographic/tetrahedra-relations.png}
\footnotetext{Image credit: \citet{chen2022exact}}
\end{frame}
\begin{frame}{Details of RG procedure}
\begin{columns}[c]
\column{0.5\textwidth}
\begin{enumerate}
\item PEPS tensor unit of $\bra{\Omega}$: $T^{a_1 a_2 a_3}_{I_1 I_2 I_3}$
\begin{itemize}
\item $a_i\in\mathcal{C}$: physical indices
\item $I_i$: virtual indices (trivial at first)
\end{itemize}
\item Apply tetrahedra on surface to change its triangulation
\item Use SVD to split coarse-grained tensor: $M^{acbd}_{ILJK}\to\tilde{T}^{akc}_{IHL}(k)\,\tilde{T}^{bdk}_{JHK}$
\begin{itemize}
\item $H$: new generated virtual index
\item Bond dimension $\chi^2$ truncated to $\chi$
\end{itemize}
\end{enumerate}
\column{0.5\textwidth}
\centering
\includegraphics[width=0.85\textwidth]{images/holographic/rg-2+1d-blocking.png} \\[1ex]
\includegraphics[width=0.75\textwidth]{images/holographic/rg-2+1d.png}
\end{columns}
\footnotetext{Image credit: \citet{chen2022exact}}
\end{frame}
\begin{frame}{Bulk-boundary propagators in 2d Ising model}
\begin{columns}[T]
\column{0.6\textwidth}
\begin{itemize}
\item Correlation between bulk/boundary operators: \\[-2ex]
\begingroup
\small
\mbox{\quad}
$
\begin{aligned}
&\mathrel{\phantom{=}}
\ev[\big]{\mathcal{O}_{n=1}(0,0) \, \mathcal{O}_n(x,y)} \\
&= \bigl\langle \Omega(T_{\Lambda_1}) \big|
\sigma^z(0,0) \, U^{n-1}(\mathcal{C}) \, \sigma^z(x,y) \, U^n(\mathcal{C}) \cdots
\big| \Psi \bigr\rangle \\
&= \bigl\langle \Omega(T_{\Lambda_1}) \big|
\sigma^z(0,0) \, U^{n-1}(\mathcal{C}) \, \sigma^z(x,y)
\big| \Psi_{\Lambda_n} \bigr\rangle
\end{aligned}
$
\endgroup
\item AdS/CFT prediction: $\ev{\mathcal{O}_1 \, \mathcal{O}_n} \sim \left[ \frac{z}{x^2+z^2} \right]^\Delta$
\item $\ev{\mathcal{O}_n\mathcal{O}_1} \sim z_n(x_n^2+1)$ plot indicates that the tensor network is holographic
\begin{itemize}
\item $\mathcal{O}_{1n}$: $\mathcal{O}_1$ pushed to $n$-th layer
\item $z_n=(\sqrt{2})^{n-1}, \, x_n=x_1/z_n$
\end{itemize}
\end{itemize}
\column{0.4\textwidth}
\centering
\includegraphics[width=0.8\textwidth]{images/holographic/bulk-boundary-propagator-1.png}
\includegraphics[width=0.8\textwidth]{images/holographic/bulk-boundary-propagator-2.png}
\vspace{-0.5em}
\end{columns}
\footnotetext{Image credit: \citet{chen2022exact}}
\end{frame}
\begin{frame}{Bulk operator reconstruction \& operator pushing}
\begin{columns}[c]
\column{0.65\textwidth}
\begin{itemize}
\item Generalized free fields (in the bulk)
\begin{itemize}
\item Correlation functions satisfy Wick's theorem
\item Can be decomposed as a sum of \emph{simple operators} (in the boundary)
\end{itemize}
\item Operator pushing: $\mathcal{O} \bigl( \mathbb{V}^H \bigr) \cdot M = M \cdot \mathcal{O} \bigl( \mathbb{V}^K \bigr)$
\begin{itemize}
\item Bulk operator: $\mathcal{O} \bigl( \mathbb{V}^H \bigr)$ \\
\mbox{\quad}
$
= \I_1 \otimes \cdots \otimes \I_{i-1} \otimes X_i \otimes \I_{i+1} \otimes \dots \otimes \I_{H}
$
\item Boundary operator: $\mathcal{O} \bigl( \mathbb{V}^K \bigr)$ \\
\mbox{\quad}
$
= \sum_{i=1}^K \alpha_i \, \bigl(
\I_1 \otimes \cdots \otimes \I_{i-1} \otimes X_i \otimes \I_{i+1} \otimes \dots \otimes \I_{K}
\bigr)
$
\end{itemize}
\end{itemize}
\column{0.35\textwidth}
\begin{center}
\scriptsize
\tikzset{x=1em, y=1em, node font=\tiny}
\tikzinput{operator-pushing/operator-pushing-narrow}
\end{center}
\end{columns}
\footnotetext{Image credit: \citet{zeng2023bulk}}
\end{frame}
\begin{frame}{Operator pushing in 1+1d}
\linespread{1.4}
\selectfont
\begin{itemize}
\item Find boundary operator $A$ for given bulk operator $B$, s.t. \\[0.8ex]
\mbox{\qquad}
\begingroup
\scriptsize
\tikzset{x=1em, y=1em, node font=\tiny}
\tikzinput{operator-pushing/constraint-1+1d}
\endgroup
\quad\textrightarrow\quad
$A_{(ij), (i'j')} M^{i'j'}_{ k} = M^{ij}_{k'} B_{k'k}$
\item Generalized Pauli matrices: $\sigma_\mu \coloneq \sigma_{ns+t} = X^t Z^s$ where \\[1ex]
\mbox{\qquad}
$
X = \left( \begin{smallmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{smallmatrix} \right)\!, \,
Z = \left( \begin{smallmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & \omega & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \omega^{n-2} & 0 \\
0 & 0 & \cdots & 0 & \omega^{n-1}
\end{smallmatrix} \right)
$
\vspace{0.5ex}
\item Constraint equations: $A_{(ij), (i'j')} \delta_{G(i',j'), k} = \delta_{G(i,j), k'} B_{k'k} = (\sigma_\mu)_{G(i,j), k}$
\begin{itemize}
\item One specific solution: $A^{(\mu)}_{(ij), (0j')} = (\sigma_\mu)_{G(i,j), j'}$
\end{itemize}
\item For simple form $A$: $\tilde{A}_{ii'} \delta_{G(i',j), k} - \sum_\mu \alpha_\mu (\sigma_\mu)_{G(i,j), k} \coloneq \tilde{M}(\cdots) = 0$
\end{itemize}
\end{frame}
\begin{frame}{Invitation: \texorpdfstring{$\Z_2$}{ℤ₂}}
\begin{itemize}
\item Tensor unit:
$
M = \delta_{G(i,j),k} = \delta_{(i+j)\bmod 2,k} = \left( \begin{smallmatrix}
1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0
\end{smallmatrix} \right)
$
\item Null space:
$
\{ v^{(p)} \} = \left\{ \,
\left( \begin{smallmatrix} 1 \\ 0 \\ 0 \\ -1 \end{smallmatrix} \right)\!, \,
\left( \begin{smallmatrix} 0 \\ 1 \\ -1 \\ 0 \end{smallmatrix} \right) \,
\right\}
\implies
A^* = \left( \begin{smallmatrix}
\beta_{0,0} & \beta_{0,1} & -\beta_{0,1} & -\beta_{0,0} \\
\beta_{1,0} & \beta_{1,1} & -\beta_{1,1} & -\beta_{1,0} \\
\beta_{2,0} & \beta_{2,1} & -\beta_{2,1} & -\beta_{2,0} \\
\beta_{3,0} & \beta_{3,1} & -\beta_{3,1} & -\beta_{3,0}
\end{smallmatrix} \right)
$
\item Full solutions:
$
\left\{ \begin{aligned}
& B = \I \implies A = A^* + \left( \begin{smallmatrix}
1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0
\end{smallmatrix} \right) \\
& B = \sigma_x \implies A = A^* + \left( \begin{smallmatrix}
0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0
\end{smallmatrix} \right)
\implies A = \I \otimes \sigma_x \text{ or } \sigma_x \otimes \I \\
& B = \sigma_z \implies A = A^* + \left( \begin{smallmatrix}
1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0
\end{smallmatrix} \right) \\
& B = -\ii\sigma_y \implies A = A^* + \left( \begin{smallmatrix}
0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0
\end{smallmatrix} \right)
\end{aligned} \right.
$
\end{itemize}
\end{frame}
\begin{frame}{Abelian example: \texorpdfstring{$\Z_n$}{ℤₙ}}
\linespread{1.4}
\selectfont
\begin{itemize}
\item Fusion rules: $G(i,j) = (i+j)\bmod n$
\item General solutions:
\begin{itemize}
\item General part:
$
A^* = \left( \begin{smallmatrix}
\beta_{0,0} v^{(0)} + \dots + \beta_{0,n^2-n-1} v^{(n^2-n-1)} \\[0.5ex]
\vdots \\
\beta_{n^2-1,0} v^{(0)} + \dots + \beta_{n^2-1,n^2-n-1} v^{(n^2-n-1)}
\end{smallmatrix} \right)
$
\item Specific part: $A^{(\mu)}_{(ij), (0j')} = (\sigma_\mu)_{(i+j)\bmod n, j'}$
\end{itemize}
\item Simple form solutions:
\begin{itemize}
\item $\operatorname{size}(\tilde{M})=n^3\times2n^2, \, \rank(\tilde{M})=2n^2-n$
\item $n$ solutions: $\tilde{A}^{(k)}_{ii'} = (\sigma_k)_{ii'}, \, \alpha^{(k)}_\mu = \delta_{k\mu}$
\item Generalized free fields $B=\sigma_k$ \textrightarrow{} $A=\sigma_k\otimes\I$ or $\I\otimes\sigma_k$
\item Tensor network of $L$ layers: $A_L = \I^{\otimes L-l-1} \otimes \sigma_k \otimes \I^{\otimes l}$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Non-abelian example: \texorpdfstring{$S_3$}{𝑆₃}}
\begin{itemize}
\item Group multiplication table:
\begingroup
\tiny
\setlength{\arraycolsep}{4pt}
$
\begin{array}{c|cccccc}
& g_0 & g_1 & g_2 & g_3 & g_4 & g_5 \\
\hline
g_0 & g_0 & g_1 & g_2 & g_3 & g_4 & g_5 \\
g_1 & g_1 & g_0 & g_3 & g_2 & g_5 & g_4 \\
g_2 & g_2 & g_4 & g_0 & g_5 & g_1 & g_3 \\
g_3 & g_3 & g_5 & g_1 & g_4 & g_0 & g_2 \\
g_4 & g_4 & g_2 & g_5 & g_0 & g_3 & g_1 \\
g_5 & g_5 & g_3 & g_4 & g_1 & g_2 & g_0
\end{array}
$
\endgroup
\item Null space: spanned by $v^{(p)}=\bigl( \tilde{v}^{(p)}, \, \hat{v}^{(p)} \bigr)^\trans$
\begin{itemize}
\item $\tilde{v}^{(1)}=(1,0,0,0,0,0)^\trans, \, \tilde{v}^{(2)}=(0,0,0,1,0,0)^\trans, \, \cdots; \enspace \hat{v}^{(p)}_q=\delta_{pq}$
\end{itemize}
\item Simple form solutions:
\begin{itemize}
\item $\operatorname{size}(\tilde{M})=216\times72, \, \rank(\tilde{M})=66$
\textrightarrow{} has 6 solutions \\[1ex]
\item $
\tilde{A}^{(0)}_{L/R} = B^{(0)}_{L/R} = \left( \begin{smallmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{smallmatrix} \right)\!, \,
\tilde{A}^{(1)}_{L/R} = B^{(1)}_{L/R} = \left( \begin{smallmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{smallmatrix} \right)\!, \, \cdots
$ \\[1ex]
\item Possible $\Z_2$ subgroup structure
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Operator pushing in 2+1d}
\begin{columns}[c]
\column{0.62\textwidth}
\begin{itemize}
\item Tetrahedra:
\begin{itemize}
\item Single: \textit{F}-moves, change triangulation
\item Multiple: RG operators, boundary \textrightarrow{} bulk
\end{itemize}
\item RG operator:
\begin{itemize}
\item Map $i,j,m,n$ (blue) \textrightarrow{} $a$ (red)
\item Keep $b,c,d,e$ unchanged
\end{itemize}
\item Constraint equations:
\begin{itemize}
\item $A_{(ijk), (i'j'k')} M_{(i'j'k'), I} = M_{(ijk), I'} B_{I'I}, \, B=\sigma_\mu$ \\[0.5ex]
\item $I=\Phi(b,c,a)$: face index, $\Phi$: fusion rules
\item $M_{(ijk), I} = M_{(ijk), \Phi(b,c,a)} = \sqrt{d_j d_k d_b d_c} \, \bigl[ F^{jkb}_c \bigr]_{ia}$
\end{itemize}
\end{itemize}
\column{0.38\textwidth}
\begin{center}
\scriptsize
\tikzset{x=1em, y=1em, node font=\tiny}
\tikzinput{operator-pushing/rg-2+1d-f-move-alt} \\[1ex]
\tikzinput{operator-pushing/rg-2+1d-rg} \\[1ex]
\tikzinput{operator-pushing/tetrahedra-double-1} \quad
\tikzinput{operator-pushing/tetrahedra-single}
\end{center}
\end{columns}
\footnotetext{Image credit: \citet{zeng2023bulk}}
\end{frame}
\begin{frame}{Example: \texorpdfstring{$\Z_n$}{ℤₙ}}
\begin{itemize}
\item Trivial $\Z_n$ Dijkgraaf--Witten models: $F=1$
\item Face index: $I = nb + c = n [(i+j)\bmod n] + [(i+k)\bmod n]$
\item General solutions:
\begin{itemize}
\item Null space:
$
v^{(p)}_q = \delta_{n [(- \lfloor p/n\rfloor - \lfloor p/n^2 \rfloor - 2) \bmod n] + [(- \lfloor p/n^2 \rfloor - 2) \bmod n], q}
- \delta_{n^3-p-1, q}
$
\item Specific part:
$A^{(\mu)}_{(ijk), (0j'k')} = (\sigma_\mu)_{n[(i+j)\bmod n]+[(i+k)\bmod n], nj'+k'}$
\end{itemize}
\item Simple form solutions:
\begin{itemize}
\item $\operatorname{size}(\tilde{M})=n^5\times(n^4+n^2), \, \rank(\tilde{M})=n^4+n^2-n$
\textrightarrow{} has $n$ solutions
\item For small $n$ (e.g.\ $\Z_2, \Z_3$):
$B^{(i)} = \sigma_i \otimes \sigma_i, \, \tilde{A}^{(i)} = \sigma_i, \, A^{(i)} = \sigma_i \otimes \I \otimes \I$
\item Can be further iterated since $B$ can be decomposed on edges
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Example: Fibonacci}
\begin{itemize}
\item Fusion rules: $
\1 \times \1 = \1, \,
\1 \times \tau = \tau \times \1 = \tau, \,
\tau \times \tau = \1 + \tau
$
\item \textit{F}-symbols: $
[F^{\tau\tau\tau}_\tau]_{ij} = \left( \begin{smallmatrix}
\varphi^{-1} & \varphi^{-1/2} \\
\varphi^{-1/2} & -\varphi^{-1}
\end{smallmatrix} \right)
$ \\[1ex]
\item $
M_{(ijk), I} = \left( \begin{smallmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & \varphi & 0 & 0 \\
0 & 0 & 0 & \varphi & 0 \\
0 & \varphi & 0 & 0 & \varphi^{3/2} \\
0 & \varphi & 0 & 0 & 0 \\
0 & 0 & 0 & \varphi & \varphi^{3/2} \\
0 & 0 & \varphi & 0 & \varphi^{3/2} \\
\varphi & \varphi^{3/2} & \varphi^{3/2} & \varphi^{3/2} & -\varphi
\end{smallmatrix} \right)\!, \,
\rank(M) = 5
$ \\[1ex]
\item Simple form solutions:
\begin{itemize}
\item $\operatorname{size}(\tilde{M})=40\times29, \, \rank(\tilde{M})=28$
\textrightarrow{} only has one solution
\item No non-trivial generalized free field
\end{itemize}
\end{itemize}
\end{frame}
\section{Tensor network representations of \\ Virasoro \& Kac--Moody algebra}
\begin{frame}{Review of 2d CFT}
\linespread{1.4}
\selectfont
\begin{itemize}
\item OPE of primary field $\phi$
\begin{itemize}
\item $T(z) \phi(w,\bar{z}) \sim \frac{h}{(z-w)^2} \phi(w,\bar{z}) + \frac{1}{z-w} \partial_w\phi(w,\bar{z})$
\item $T(z) T(w) \sim \frac{c/2}{(z-w)^4} + \frac{2}{(z-w)^2} T(w) + \frac{1}{z-w} \partial_w T(w)$
\item $h$: conformal dimension, $c$: central charge
\end{itemize}
\item Virasoro algebra
\begin{itemize}
\item Mode expansion of energy-momentum tensor: $L_n = \frac{1}{2\pi\ii} \oint z^{n+1} T(z) \, \dd z$
\item $\bigl[ L_m, L_n \bigr] = (m-n) L_{m+n} + \frac{c}{12} m \bigl( m^2-1 \bigr) \delta_{m+n,0}$
\end{itemize}
\item Kac--Moody algebra
\begin{itemize}
\item Mode expansion of current operator: $J^\alpha_n = \frac{1}{2\pi\ii} \oint z^{n+1} J^\alpha(z) \, \dd z$
\item $
\bigl[ J^\alpha_m, J^\beta_n \bigr] = \ii \sum_\gamma f^{\alpha\beta\gamma} J^\gamma_{m+n} + km \delta^{\alpha\beta} \delta_{m+n,0}, \,
\bigl[ L_m, J^\alpha_n \bigr] = -n J^\alpha_{m+n}
$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Torus partition function}
\linespread{1.4}
\selectfont
\begin{itemize}
\item $
Z = \tr \Bigl[ \exp \bigl( -2\pi\tau_2 H \bigr) \exp \bigl( 2\pi\ii\tau_1 P \bigr) \Bigr]
= \sum_\alpha \exp \Bigl[ - 2\pi \tau_2 \Bigl(\Delta_\alpha - \frac{c}{12} \Bigr) + 2\pi\ii\tau_1 s_\alpha \Bigr]
$
\begin{itemize}
\item $\tau=\tau_1+\ii\tau_2$: torus parameter
\item $\Delta_\alpha$: scaling dimension, $s_\alpha$: conformal spin
\end{itemize}
\item Lattice approximation on $m\times n$ grid
\begin{itemize}
\item $
Z = \sum_\alpha \exp \Bigl[
- 2\pi \frac mn \Bigl(\Delta_\alpha - \frac{c}{12} \Bigr)
+ mnf + \mathcal{O} \Bigl( \frac{m}{n^\gamma} \Bigr)
\Bigr]
= \tr M^m
$
\item Eigenvalue of $M$: $
\lambda_\alpha = \exp \Bigl[
- \frac{2\pi}{n} \Bigl(\Delta_\alpha - \frac{c}{12} \Bigr)
+ nf + \mathcal{O} \Bigl( \frac{1}{n^\gamma} \Bigr)
\Bigr]
$
\item Fix $\Delta_{\1}=0$ and $\Delta_T=2$:
$\Delta_\alpha = \frac{2}{\log\lambda_0 - \log\lambda_T} \bigl( \log\lambda_0 - \log \lambda_\alpha \bigr)$
\end{itemize}
\item Translation operator:
\begingroup
\tikzset{x=1em, y=1em, node font=\tiny}
$P_{i_1 i_2 \cdots i_n, \, j_1 j_2 \cdots j_n} = \tikzinput{translation-operator}$
\endgroup
\end{itemize}
\end{frame}
\begin{frame}{Construction of Virasoro \& Kac--Moody algebra}
\begin{columns}[c]
\column{0.45\textwidth}
\begin{itemize}
\item Lattice Virasoro operator: \\
\mbox{\quad} $L_n \sim \sum_{j=1}^N \ee^{ \ii j n \frac{2\pi}{N}} T(j)$
\item Lattice Kac--Moody operator: \\
\mbox{\quad} $J_n \sim \sum_{j=1}^N \ee^{ \ii j n \frac{2\pi}{N}} J(j)$
\item Algorithm:
\begin{enumerate}
\item Build tensor network with $A_{ijkl}$
\item Calculate $\ket{\phi_T}$ or $\ket{\phi_J}$ from cylinder eigenstates
\item Reshape $\ket{\phi_T}$ / $\ket{\phi_J}$ to $T$ / $J$
\item Insert $T$ / $J$ into a new cylinder with factor $\ee^{\pm2\pi\ii j n/N}$
\end{enumerate}
\end{itemize}
\column{0.55\textwidth}
\centering
\includegraphics[width=0.9\textwidth]{images/virasoro/construction.pdf}
\end{columns}
\footnotetext{Image credit: \citet{wang2022virasoro}}
\end{frame}
\begin{frame}{Example: Virasoro algebra in Ising model}
\begin{columns}[T]
\column{0.5\textwidth}
\begin{itemize}
\item Tensor unit:
\begin{itemize}
\item $A_{ijkl} = \ee^{-\beta (\sigma_i\sigma_j + \sigma_j\sigma_k + \sigma_k\sigma_l + \sigma_l\sigma_i)}$
\item Use blocking or TRG/TNR
\end{itemize}
\item Can be verified by applying $L_n$ on cylinder eigenstates $\ket{\phi_\alpha}$ and checking $\langle\phi_\beta|L_n|\phi_\alpha\rangle$
\item Numerical results: