Skip to content

Commit a8aa269

Browse files
committed
update README
1 parent bcada31 commit a8aa269

File tree

7 files changed

+25
-39
lines changed

7 files changed

+25
-39
lines changed

README.md

+23-37
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,10 @@ Please also have a look at
3232
- [tidyHeatmap](https://stemangiola.github.io/tidyHeatmap/) for heatmaps
3333
produced with tidy principles
3434

35-
![visual cue](man/figures/logo_interaction-01.png)
35+
<figure>
36+
<img src="man/figures/logo_interaction-01.png" alt="visual cue" />
37+
<figcaption aria-hidden="true">visual cue</figcaption>
38+
</figure>
3639

3740
# Introduction
3841

@@ -165,7 +168,7 @@ Here we plot number of features per cell.
165168

166169
``` r
167170
pbmc_small %>%
168-
tidyseurat::ggplot(aes(nFeature_RNA, fill = groups)) +
171+
ggplot(aes(nFeature_RNA, fill = groups)) +
169172
geom_histogram() +
170173
my_theme
171174
```
@@ -176,7 +179,7 @@ Here we plot total features per cell.
176179

177180
``` r
178181
pbmc_small %>%
179-
tidyseurat::ggplot(aes(groups, nCount_RNA, fill = groups)) +
182+
ggplot(aes(groups, nCount_RNA, fill = groups)) +
180183
geom_boxplot(outlier.shape = NA) +
181184
geom_jitter(width = 0.1) +
182185
my_theme
@@ -196,7 +199,7 @@ pbmc_small %>%
196199
my_theme
197200
```
198201

199-
![](man/figures/unnamed-chunk-12-1.png)<!-- -->
202+
![](man/figures/unnamed-chunk-15-1.png)<!-- -->
200203

201204
# Preprocess the dataset
202205

@@ -283,27 +286,24 @@ frame.
283286

284287
``` r
285288
pbmc_small_cluster %>%
286-
tidyseurat::count(groups, seurat_clusters)
289+
count(groups, seurat_clusters)
287290
```
288291

289-
## # A tibble: 8 × 3
292+
## # A tibble: 6 × 3
290293
## groups seurat_clusters n
291294
## <chr> <fct> <int>
292-
## 1 g1 0 17
293-
## 2 g1 1 14
294-
## 3 g1 2 9
295-
## 4 g1 3 4
296-
## 5 g2 0 13
297-
## 6 g2 1 12
298-
## 7 g2 2 6
299-
## 8 g2 3 5
295+
## 1 g1 0 23
296+
## 2 g1 1 17
297+
## 3 g1 2 4
298+
## 4 g2 0 17
299+
## 5 g2 1 13
300+
## 6 g2 2 6
300301

301302
We can identify cluster markers using Seurat.
302303

303304
<!-- If this is Seurat v4, comment out the v3 markers -->
304305
<!--
305-
306-
306+
&#10;
307307
```r
308308
# Identify top 10 markers per cluster
309309
markers <-
@@ -312,16 +312,14 @@ markers <-
312312
FindAllMarkers(only.pos = TRUE) %>%
313313
group_by(cluster) %>%
314314
top_n(10, avg_logFC)
315-
316-
# Plot heatmap
315+
&#10;# Plot heatmap
317316
pbmc_small_cluster %>%
318317
DoHeatmap(
319318
features = markers$gene,
320319
group.colors = friendly_cols
321320
)
322321
```
323-
324-
-->
322+
&#10;-->
325323
<!-- If this is Seurat v3, comment out the v4 markers -->
326324

327325
``` r
@@ -363,7 +361,10 @@ pbmc_small_UMAP %>%
363361
)
364362
```
365363

366-
![screenshot plotly](man/figures/plotly.png)
364+
<figure>
365+
<img src="man/figures/plotly.png" alt="screenshot plotly" />
366+
<figcaption aria-hidden="true">screenshot plotly</figcaption>
367+
</figure>
367368

368369
## Cell type prediction
369370

@@ -397,7 +398,7 @@ pbmc_small_cell_type <-
397398

398399
# Reorder columns
399400
pbmc_small_cell_type %>%
400-
tidyseurat::select(cell, first.labels, everything())
401+
select(cell, first.labels, everything())
401402
```
402403

403404
We can easily summarise the results. For example, we can see how cell
@@ -514,18 +515,3 @@ In tidyseurat, cell aggregation can be achieved using the
514515
pbmc_small %>%
515516
aggregate_cells(groups, assays = "RNA")
516517
```
517-
518-
## # A tibble: 460 × 6
519-
## .feature .sample RNA groups .aggregated_cells orig.ident
520-
## <chr> <chr> <dbl> <chr> <int> <fct>
521-
## 1 MS4A1 g2 35.5 g2 36 SeuratProject
522-
## 2 CD79B g2 52.8 g2 36 SeuratProject
523-
## 3 CD79A g2 37.2 g2 36 SeuratProject
524-
## 4 HLA-DRA g2 130. g2 36 SeuratProject
525-
## 5 TCL1A g2 29.5 g2 36 SeuratProject
526-
## 6 HLA-DQB1 g2 65.5 g2 36 SeuratProject
527-
## 7 HVCN1 g2 29.8 g2 36 SeuratProject
528-
## 8 HLA-DMB g2 43.2 g2 36 SeuratProject
529-
## 9 LTB g2 111. g2 36 SeuratProject
530-
## 10 LINC00926 g2 9.91 g2 36 SeuratProject
531-
## # ℹ 450 more rows

man/figures/pc_plot-1.png

34.2 KB
Loading

man/figures/plot1-1.png

12.5 KB
Loading

man/figures/plot2-1.png

9.83 KB
Loading

man/figures/unnamed-chunk-15-1.png

46.5 KB
Loading

man/fragments/intro.Rmd

+1-1
Original file line numberDiff line numberDiff line change
@@ -299,7 +299,7 @@ pbmc_small_cell_type <-
299299
300300
# Reorder columns
301301
pbmc_small_cell_type %>%
302-
tidyseurat::select(cell, first.labels, everything())
302+
select(cell, first.labels, everything())
303303
```
304304

305305
We can easily summarise the results. For example, we can see how cell type classification overlaps with cluster classification.

vignettes/figures_article.Rmd

+1-1
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ p5 =
156156
```{r eval=FALSE}
157157
p6 =
158158
PBMC_clean_scaled_UMAP_cluster_cell_type %>%
159-
tidyseurat::unite("cluster_cell_type", c(first.labels, seurat_clusters), remove=FALSE) %>%
159+
unite("cluster_cell_type", c(first.labels, seurat_clusters), remove=FALSE) %>%
160160
pivot_longer(
161161
c(seurat_clusters, first.labels_single),
162162
names_to = "classification", values_to = "value"

0 commit comments

Comments
 (0)