Evaluate the Modulus function for single-precision floating-point numbers.
The modulus function is defined as
where x
is the dividend and y
is the divisor.
var fmodf = require( '@stdlib/math/base/special/fmodf' );
Evaluates the Modulus function for single-precision floating-point numbers.
var v = fmodf( 8.0, 3.0 );
// returns 2.0
v = fmodf( 9.0, 3.0 );
// returns 0.0
v = fmodf( 8.9, 3.0 );
// returns ~2.9
v = fmodf( NaN, 3.0 );
// returns NaN
v = fmodf( 5.0, NaN );
// returns NaN
v = fmodf( NaN, NaN );
// returns NaN
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var fmodf = require( '@stdlib/math/base/special/fmodf' );
var opts = {
'dtype': 'float32'
};
var x = discreteUniform( 100, 0, 100, opts );
var y = discreteUniform( 100, -50, 50, opts );
logEachMap( '%d %d = %d', x, y, fmodf );
#include "stdlib/math/base/special/fmodf.h"
Evaluates the Modulus function for single-precision floating-point numbers.
float out = stdlib_base_fmodf( 8.9f, 3.0f );
// returns 2.9f
out = stdlib_base_fmodf( 4.0f, 2.0f );
// returns 0.0f
The function accepts the following arguments:
- x:
[in] float
dividend. - y:
[in] float
divisor.
float stdlib_base_fmodf( const float x, const float y );
#include "stdlib/math/base/special/fmodf.h"
#include <stdlib.h>
#include <stdio.h>
int main( void ) {
float x[ 100 ];
float y[ 100 ];
float out;
int i;
for ( i = 0; i < 100; i++ ) {
x[ i ] = ( ( (float)rand() / (float)RAND_MAX ) * 10.0f );
y[ i ] = ( ( (float)rand() / (float)RAND_MAX ) * 10.0f ) - 5.0f;
}
for ( i = 0; i < 100; i++ ) {
out = stdlib_base_fmodf( x[ i ], y[ i ] );
printf( "fmodf(%f, %f) = %f\n", x[ i ], y[ i ], out );
}
}