Perform the matrix-vector operation
y = alpha*A*x + beta*y
wherealpha
andbeta
are scalars,x
andy
areN
element vectors, andA
is anN
byN
symmetric band matrix, withK
super-diagonals.
var ssbmv = require( '@stdlib/blas/base/ssbmv' );
Performs the matrix-vector operation y = alpha*A*x + beta*y
where alpha
and beta
are scalars, x
and y
are N
element vectors, and A
is an N
by N
symmetric band matrix, with K
super-diagonals.
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 4.0, 3.0, 5.0, 0.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0 ] );
ssbmv( 'row-major', 'lower', 3, 1, 1.0, A, 2, x, 1, 0.0, y, 1 );
// y => <Float32Array>[ 10.0, 25.0, 10.0 ]
The function has the following parameters:
- order: storage layout.
- uplo: specifies whether the upper or lower triangular part of the symmetric matrix
A
is supplied. - N: specifies the order of the matrix
A
. - K: specifies the number of super-diagonals of the matrix
A
- α: scalar constant.
- A: packed banded form of a symmetric matrix
A
stored in linear memory as aFloat32Array
. - LDA: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
) - x: input
Float32Array
. - sx: index increment for
x
. - β: scalar constant.
- y: output
Float32Array
. - sy: index increment for
y
.
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of y
in reverse order,
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 4.0, 3.0, 5.0, 0.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0 ] );
ssbmv( 'row-major', 'lower', 3, 1, 1.0, A, 2, x, 1, 0.0, y, -1 );
// y => <Float32Array>[ 10.0, 25.0, 10.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array/float32' );
// Initial arrays...
var x0 = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0 ] );
var A = new Float32Array( [ 1.0, 2.0, 4.0, 3.0, 5.0, 0.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
ssbmv( 'row-major', 'lower', 3, 1, 1.0, A, 2, x1, 1, 0.0, y1, 1 );
// y0 => <Float32Array>[ 0.0, 10.0, 25.0, 10.0 ]
Performs the matrix-vector operation y = alpha*A*x + beta*y
using alternative indexing semantics where alpha
and beta
are scalars, x
and y
are N
element vectors, and A
is an N
by N
symmetric band matrix, with K
super-diagonals.
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 4.0, 3.0, 5.0, 0.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0 ] );
ssbmv.ndarray( 'lower', 3, 1, 1.0, A, 2, 1, 0, x, 1, 0, 0.0, y, 1, 0 );
// y => <Float32Array>[ 10.0, 25.0, 10.0 ]
The function has the following additional parameters:
- oa: starting index for
A
. - sa1: first dimension index increment for
A
. - sa2: second dimension index increment for
A
. - ox: starting index for
x
. - oy: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float32Array = require( '@stdlib/array/float32' );
var A = new Float32Array( [ 1.0, 2.0, 4.0, 3.0, 5.0, 0.0 ] );
var x = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0 ] );
ssbmv.ndarray( 'lower', 3, 1, 1.0, A, 2, 1, 0, x, 1, 1, 0.0, y, 1, 1 );
// y => <Float32Array>[ 0.0, 10.0, 25.0, 10.0 ]
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var ssbmv = require( '@stdlib/blas/base/ssbmv' );
var opts = {
'dtype': 'float32'
};
var N = 3;
var A = [ 1, 2, 0, 3, 4, 5 ];
var x = discreteUniform( N, -10, 10, opts );
var y = discreteUniform( N, -10, 10, opts );
ssbmv.ndarray( 'upper', N, 1, 1.0, A, 1, 2, 0, x, 1, 0, 1.0, y, 1, 0 );
console.log( y );
TODO
TODO.
TODO
TODO
TODO
TODO