-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
60 lines (46 loc) · 1.49 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from data import KoHWSentenceDataset
from utils.plot import set_font
from kohwctop.preprocess.functions import (
get_data_from_train_set,
save_n_piece,
get_corrct_rate_n_piece,
separate_by_space,
merge_pieces,
crop_blank,
)
from insight.data_insight import (
plot_sentence_cutting_info,
plot_brightness_gradient,
)
import torch
import random
import os
from rich import print
from rich.progress import track
from rich.traceback import install
from utils.rich import new_progress, console
install()
set_font(family='BM JUA_TTF')
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
train_set = KoHWSentenceDataset()
n_corrct_n_seperated = 0
kwargs = {
'kernel_width': 10,
'min_brightness': 20,
'min_space': 1,
'min_letter_len': 1,
}
for x, t in track(train_set, total=len(train_set)):
# x, t = random.choice(train_set)
# x, t = train_set[0]
sep_idxs, brightness_list = separate_by_space(x, **kwargs)
# sep_idxs = merge_pieces(sep_idxs)
# sep_idxs2 = crop_blank(x, sep_idxs)
plot_sentence_cutting_info(x, sep_idxs, t, block=False)
title = f'Image Brightness Gradient\n(kernel_width: {kwargs["kernel_width"]})'
plot_brightness_gradient(x, brightness_list, title=title, ylim=100, block=True)
# input()
# with new_progress() as progress:
# n_pieces_set = get_data_from_train_set(train_set, progress, func=save_n_piece, **kwargs)
# correct_rate = get_corrct_rate_n_piece(train_set, n_pieces_set)
# print(f'{correct_rate:.2f}% correct')