-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathParallelRowDataSource.java
186 lines (159 loc) · 6.41 KB
/
ParallelRowDataSource.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
package datasources;
import datasources.utils.DBClientWrapper;
import datasources.utils.DBTableReader;
import edb.common.Split;
import edb.common.UnknownTableException;
import org.apache.log4j.Logger;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.sources.v2.DataSourceOptions;
import org.apache.spark.sql.sources.v2.DataSourceV2;
import org.apache.spark.sql.sources.v2.ReadSupport;
import org.apache.spark.sql.sources.v2.reader.DataReader;
import org.apache.spark.sql.sources.v2.reader.DataReaderFactory;
import org.apache.spark.sql.sources.v2.reader.DataSourceReader;
import org.apache.spark.sql.types.StructType;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Another simple DataSource that supports parallel reads (i.e.: on multiple executors)
* from the ExampleDB. It gets a table name from its configuration and infers a schema from
* that table. If a number of partitions is specified in properties, it is used. Otherwise,
* the table's default partition count (always 4 in ExampleDB) is used.
*/
public class ParallelRowDataSource implements DataSourceV2, ReadSupport {
static Logger log = Logger.getLogger(ParallelRowDataSource.class.getName());
/**
* Spark calls this to create the reader. Notice how it pulls the host and port
* on which ExampleDB is listening, as well as a table name, from the supplied options.
* @param options
* @return
*/
@Override
public DataSourceReader createReader(DataSourceOptions options) {
String host = options.get("host").orElse("localhost");
int port = options.getInt("port", -1);
String table = options.get("table").orElse("unknownTable"); // TODO: throw
int partitions = Integer.parseInt(options.get("partitions").orElse("0"));
return new Reader(host, port, table, partitions);
}
/**
* This is how Spark discovers the source table's schema by requesting a schema from ExmapleDB,
* and how it obtains the reader factories to be used by the executors to create readers.
* Notice that one factory is created for each partition.
*/
static class Reader implements DataSourceReader {
static Logger log = Logger.getLogger(Reader.class.getName());
public Reader(String host, int port, String table, int partitions) {
_host = host;
_port = port;
_table = table;
_partitions = partitions;
}
private StructType _schema;
private String _host;
private int _port;
private String _table;
private int _partitions;
@Override
public StructType readSchema() {
if (_schema == null) {
DBClientWrapper db = new DBClientWrapper(_host, _port);
db.connect();
try {
_schema = db.getSparkSchema(_table);
} catch (UnknownTableException ute) {
throw new RuntimeException(ute);
} finally {
db.disconnect();
}
}
return _schema;
}
@Override
public List<DataReaderFactory<Row>> createDataReaderFactories() {
List<Split> splits = null;
DBClientWrapper db = new DBClientWrapper(_host, _port);
db.connect();
try {
if (_partitions == 0)
splits = db.getSplits(_table);
else
splits = db.getSplits(_table, _partitions);
} catch (UnknownTableException ute) {
throw new RuntimeException(ute);
} finally {
db.disconnect();
}
List<DataReaderFactory<Row>> factories = new ArrayList<>();
for (Split split : splits) {
DataReaderFactory<Row> factory =
new SplitDataReaderFactory(_host, _port, _table, readSchema(), split);
factories.add(factory);
}
log.info("created " + factories.size() + " factories");
return factories;
}
}
/**
* This is used by each executor to read from ExampleDB. It uses the Split to know
* which data to read.
* Also note that when DBClientWrapper's getTableReader() method is called
* it reads ALL the data in its own Split eagerly.
*/
static class TaskDataReader implements DataReader<Row> {
static Logger log = Logger.getLogger(TaskDataReader.class.getName());
public TaskDataReader(String host, int port, String table,
StructType schema, Split split)
throws UnknownTableException {
log.info("Task reading from [" + host + ":" + port + "]" );
_db = new DBClientWrapper(host, port);
_db.connect();
_reader = _db.getTableReader(table, schema.fieldNames(), split);
}
private DBClientWrapper _db;
private DBTableReader _reader;
@Override
public boolean next() {
return _reader.next();
}
@Override
public Row get() {
return _reader.get();
}
@Override
public void close() throws IOException {
_db.disconnect();
}
}
/**
* Note that this has to be serializable. Each instance is sent to an executor,
* which uses it to create a reader for its own use.
*/
static class SplitDataReaderFactory implements DataReaderFactory<Row> {
static Logger log = Logger.getLogger(SplitDataReaderFactory.class.getName());
public SplitDataReaderFactory(String host, int port,
String table, StructType schema,
Split split) {
_host = host;
_port = port;
_table = table;
_schema = schema;
_split = split;
}
private String _host;
private int _port;
private String _table;
private StructType _schema;
private Split _split;
@Override
public DataReader<Row> createDataReader() {
log.info("Factory creating reader for [" + _host + ":" + _port + "]" );
try {
return new TaskDataReader(_host, _port, _table, _schema, _split);
} catch (UnknownTableException ute) {
throw new RuntimeException(ute);
}
}
}
}