You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
PCA is often additionally performed on unit-variance preprocessed data, cf. function zscore()
2739
+
PCA is often additionally (especially if features have different physical units!) performed on \textbf{unit-variance} preprocessed data, cf. function zscore()
2711
2740
2712
-
this then yields a total variance of $$\mathrm{trace}(\mathrm{cov}(\mathrm{zscore}(\bm{X})))= F$$
2741
+
$\cdot$this normalization yields a total variance of $$\mathrm{trace}(\mathrm{cov}(\mathrm{zscore}(\bm{X})))= F$$
2713
2742
2714
2743
which the PCA spreads over the principal component (PC) scores
2715
2744
2716
2745
\end{frame}
2717
2746
2718
2747
2719
2748
2720
-
\begin{frame}[t]{Ex08: Principal Component Analysis (PCA) via SVD}
2749
+
\begin{frame}[t]{PCA via SVD}
2721
2750
2722
2751
$\cdot$ for $\bm{X}_c \in\mathbb{R}$, $\bm{X}_c = \bm{X}_r^\mathrm{T}$, $\bm{F}_c = \bm{F}_r^\mathrm{T}$, SVD matrices $\bm{U} \bm{\Sigma} \bm{V}^\mathrm{T}$ for $\bm{X}_c$
2723
2752
@@ -2805,9 +2834,10 @@ \subsection{Exercise 08}
2805
2834
2806
2835
2807
2836
2808
-
\begin{frame}[t]{Ex08: Principal Component Analysis (PCA) via Covariance}
2837
+
\begin{frame}[t]{PCA via Covariance}
2809
2838
2810
-
$\cdot$ for $\bm{X}_c \in\mathbb{R}$, $\bm{X}_c = \bm{X}_r^\mathrm{T}$, $\bm{F}_c = \bm{F}_r^\mathrm{T}$, SVD matrices $\bm{U} \bm{\Sigma} \bm{V}^\mathrm{T}$ for $\bm{X}_c$
$\cdot$an SVD-based diagonalization inherently sorts the eigenvalues in $\bm{\Lambda}$, making the orthogonal PC scores \underline{variance-sorted} (i.e. covariance matrix of $\bm{F}$ is a sorted diagonal matrix)
2900
+
$\cdot$ diagonalization with sorted eigenvalues/-vectors in $\bm{\Lambda}, \bm{V}$ of $\bm{C}_X$, making the orthogonal PC scores \underline{variance-sorted} (i.e. covariance matrix of $\bm{F}$ is a sorted diagonal matrix)
2871
2901
2872
-
$\cdot$$\bm{F} / \bm{L}$ might exhibit reflections compared to $\bm{F} / \bm{L}$ from SVD-based approach
2902
+
$\cdot$the $\bm{F} / \bm{L}$here might exhibit reflections compared to the$\bm{F} / \bm{L}$ from SVD-based approach
2873
2903
2874
-
$\cdot$ SVD / covariance approaches are consistent by itself as calculation of $\bm{F}$ and $\bm{L}$ is linked
2904
+
$\cdot$but SVD / covariance approaches are consistent by itself as calculation of $\bm{F}$ and $\bm{L}$ is linked
2875
2905
2876
2906
\end{frame}
2877
2907
2878
2908
2879
2909
2880
-
\begin{frame}[t]{Ex08: Principal Component Analysis (PCA) Feature Representation}
2910
+
\begin{frame}[t]{PCA Feature Representation}
2881
2911
\vspace{-1.5em}
2882
2912
$\cdot$ for $\bm{X}_c \in\mathbb{R}$, $\bm{X}_c = \bm{X}_r^\mathrm{T}$, $\bm{F}_c = \bm{F}_r^\mathrm{T}$, SVD matrices $\bm{U} \bm{\Sigma} \bm{V}^\mathrm{T}$ for $\bm{X}_c$
2883
2913
@@ -2968,7 +2998,7 @@ \subsection{Exercise 08}
2968
2998
2969
2999
2970
3000
2971
-
\begin{frame}[t]{Ex08: Principal Component Analysis (PCA) 2D-Data Example}
0 commit comments