@@ -2977,9 +2977,9 @@ \subsection{Fundamentals}
2977
2977
2978
2978
\begin {frame }[t]{Output Layer for Regression Model}
2979
2979
2980
- $ \cdot $ Output layer exhibits $ i=1 \dots K$ perceptrons
2980
+ $ \cdot $ Output layer exhibits $ i=1 \dots K$ neurons
2981
2981
2982
- $ \cdot $ Activation function $ \sigma (\cdot )$ for $ i\text {-th}$ perceptron : \underline {linear}
2982
+ $ \cdot $ Activation function $ \sigma (\cdot )$ for $ i\text {-th}$ neuron : \underline {linear}
2983
2983
2984
2984
$$ \sigma (z_i) = z_i$$
2985
2985
@@ -2993,9 +2993,9 @@ \subsection{Fundamentals}
2993
2993
2994
2994
\begin {frame }[t]{Output Layer for Binary Classification Model}
2995
2995
2996
- $ \cdot $ Output layer exhibits two perceptrons with shared input weights, hence acting on same $ z$
2996
+ $ \cdot $ Output layer exhibits two neurons with shared input weights, hence acting on same $ z$
2997
2997
2998
- $ \cdot $ Activation functions $ \sigma (\cdot )_{1,2}$ for the two perceptrons : \underline {sigmoid} / complementary sigmoid
2998
+ $ \cdot $ Activation functions $ \sigma (\cdot )_{1,2}$ for the two neurons : \underline {sigmoid} / complementary sigmoid
2999
2999
3000
3000
$$ \sigma _1 (z) = \frac {1}{1+\e ^{-z}} = \frac {\e ^{z}}{\e ^{z}+1} \qquad\qquad \sigma _2 (z) = 1 -\sigma _1 (z) = \frac {1}{1 + \e ^{z}} = \frac {\e ^{-z}}{\e ^{-z}+1}$$
3001
3001
@@ -3029,9 +3029,9 @@ \subsection{Fundamentals}
3029
3029
3030
3030
\begin {frame }[t]{Output Layer for Binary Classification Model}
3031
3031
3032
- $ \cdot $ Output layer exhibits a single perceptron
3032
+ $ \cdot $ Output layer exhibits a single neuron
3033
3033
3034
- $ \cdot $ Activation function $ \sigma (\cdot )$ for this single output perceptron : \underline {sigmoid}
3034
+ $ \cdot $ Activation function $ \sigma (\cdot )$ for this single output neuron : \underline {sigmoid}
3035
3035
3036
3036
$$ \sigma (z) = \frac {1}{1+\e ^{-z}} = \frac {\e ^{z}}{\e ^{z}+1}$$
3037
3037
@@ -3064,15 +3064,15 @@ \subsection{Fundamentals}
3064
3064
3065
3065
\begin {frame }[t]{Output Layer for Multi-Class Classification Model}
3066
3066
3067
- $ \cdot $ Output layer exhibits $ i=1 \dots K$ perceptrons for $ K$ mutually exclusive classes
3067
+ $ \cdot $ Output layer exhibits $ i=1 \dots K$ neurons for $ K$ mutually exclusive classes
3068
3068
3069
- $ \cdot $ Activation function $ \sigma (\cdot )$ for $ i\text {-th}$ perceptron : \underline {softmax}
3069
+ $ \cdot $ Activation function $ \sigma (\cdot )$ for $ i\text {-th}$ neuron : \underline {softmax}
3070
3070
3071
3071
$$
3072
3072
\sigma (z_i) = \frac {\e ^{z_i}}{\sum\limits _{i'=1}^{K} \e ^{z_{i'}}} \qquad \text {hence, }\sum \limits _{i=1}^{K} \sigma (z_i) = 1
3073
- \text {, which couples the perceptrons }
3073
+ \text {, which couples the neurons }
3074
3074
$$
3075
- % which couples the perceptrons in the output layer
3075
+ % which couples the neurons in the output layer
3076
3076
3077
3077
$ \cdot $ Derivatives to set up the Jacobian matrix
3078
3078
@@ -3127,7 +3127,7 @@ \subsection{Exercise 11}
3127
3127
\begin {itemize }
3128
3128
\item XOR is a classification problem, which cannot be handled by linear algebra
3129
3129
\item introduce two nonlinearities: add bias, non-linear activation function
3130
- \item perceptron concept
3130
+ \item neuron / perceptron concept
3131
3131
\item general architecture of non-linear models
3132
3132
\end {itemize }
3133
3133
\end {frame }
@@ -3357,7 +3357,7 @@ \subsection{Exercise 11}
3357
3357
3358
3358
\begin {frame }[t]{A Non-Linear Model for XOR}
3359
3359
3360
- $ \cdot $ weight matrix and bias vector to represent perceptron \textcolor {C0}{1} and \textcolor {C3}{2}
3360
+ $ \cdot $ weight matrix and bias vector to represent neurons \textcolor {C0}{1} and \textcolor {C3}{2}
3361
3361
$$
3362
3362
\bm {W}_\text {layer 1} =
3363
3363
\begin {bmatrix}
@@ -3373,7 +3373,7 @@ \subsection{Exercise 11}
3373
3373
\end {bmatrix}
3374
3374
$$
3375
3375
3376
- $ \cdot $ weight vector and bias scalar to represent perceptron \textcolor {C1}{3}
3376
+ $ \cdot $ weight vector and bias scalar to represent neuron \textcolor {C1}{3}
3377
3377
$$
3378
3378
\bm {W}_\text {layer 2} =
3379
3379
\begin {bmatrix}
@@ -3416,7 +3416,7 @@ \subsection{Exercise 11}
3416
3416
3417
3417
$ \cdot $ solution known from book Goodfellow et al. (2016): Deep Learning. MIT Press, Ch. 6.1
3418
3418
3419
- $ \cdot $ weight matrix and bias vector to represent perceptron \textcolor {C0}{1} and \textcolor {C3}{2}
3419
+ $ \cdot $ weight matrix and bias vector to represent neurons \textcolor {C0}{1} and \textcolor {C3}{2}
3420
3420
$$
3421
3421
\bm {W}_\text {layer 1} =
3422
3422
\begin {bmatrix}
@@ -3432,7 +3432,7 @@ \subsection{Exercise 11}
3432
3432
\end {bmatrix}
3433
3433
$$
3434
3434
3435
- $ \cdot $ weight vector and bias scalar to represent perceptron \textcolor {C1}{3}
3435
+ $ \cdot $ weight vector and bias scalar to represent neuron \textcolor {C1}{3}
3436
3436
$$
3437
3437
\bm {W}_\text {layer 2} =
3438
3438
\begin {bmatrix}
@@ -3616,7 +3616,7 @@ \subsection{Exercise 12}
3616
3616
\end {tikzpicture }
3617
3617
\end {center }
3618
3618
3619
- $ \cdot $ Activation function $ \sigma (\cdot )$ for this single output perceptron : \underline {sigmoid}
3619
+ $ \cdot $ Activation function $ \sigma (\cdot )$ for this single output neuron : \underline {sigmoid}
3620
3620
3621
3621
$$ \hat {y} = \sigma (z) = \frac {1}{1+\e ^{-z}} = \frac {\e ^{z}}{\e ^{z}+1}\qquad\qquad
3622
3622
\frac {\partial \sigma (z)}{\partial z} = \frac {\e ^{z}}{(\e ^{z}+1)^2} = \sigma (z) \cdot (1 -\sigma (z))
0 commit comments