|
| 1 | +/**************************************************************** |
| 2 | + * Example5_DMP_Quat9_Orientation.ino |
| 3 | + * ICM 20948 Arduino Library Demo |
| 4 | + * Initialize the DMP based on the TDK InvenSense ICM20948_eMD_nucleo_1.0 example-icm20948 |
| 5 | + * Paul Clark, February 15th 2021 |
| 6 | + * Based on original code by: |
| 7 | + * Owen Lyke @ SparkFun Electronics |
| 8 | + * Original Creation Date: April 17 2019 |
| 9 | + * |
| 10 | + * ** This example is based on InvenSense's _confidential_ Application Note "Programming Sequence for DMP Hardware Functions". |
| 11 | + * ** We are grateful to InvenSense for sharing this with us. |
| 12 | + * |
| 13 | + * ** Important note: by default the DMP functionality is disabled in the library |
| 14 | + * ** as the DMP firmware takes up 14290 Bytes of program memory. |
| 15 | + * ** To use the DMP, you will need to: |
| 16 | + * ** Edit ICM_20948_C.h |
| 17 | + * ** Uncomment line 29: #define ICM_20948_USE_DMP |
| 18 | + * ** Save changes |
| 19 | + * ** If you are using Windows, you can find ICM_20948_C.h in: |
| 20 | + * ** Documents\Arduino\libraries\SparkFun_ICM-20948_ArduinoLibrary\src\util |
| 21 | + * |
| 22 | + * Please see License.md for the license information. |
| 23 | + * |
| 24 | + * Distributed as-is; no warranty is given. |
| 25 | + ***************************************************************/ |
| 26 | + |
| 27 | +#include "ICM_20948.h" // Click here to get the library: http://librarymanager/All#SparkFun_ICM_20948_IMU |
| 28 | + |
| 29 | +//#define USE_SPI // Uncomment this to use SPI |
| 30 | + |
| 31 | +#define SERIAL_PORT Serial |
| 32 | + |
| 33 | +#define SPI_PORT SPI // Your desired SPI port. Used only when "USE_SPI" is defined |
| 34 | +#define CS_PIN 2 // Which pin you connect CS to. Used only when "USE_SPI" is defined |
| 35 | + |
| 36 | +#define WIRE_PORT Wire // Your desired Wire port. Used when "USE_SPI" is not defined |
| 37 | +#define AD0_VAL 1 // The value of the last bit of the I2C address. |
| 38 | + // On the SparkFun 9DoF IMU breakout the default is 1, and when |
| 39 | + // the ADR jumper is closed the value becomes 0 |
| 40 | + |
| 41 | +#ifdef USE_SPI |
| 42 | + ICM_20948_SPI myICM; // If using SPI create an ICM_20948_SPI object |
| 43 | +#else |
| 44 | + ICM_20948_I2C myICM; // Otherwise create an ICM_20948_I2C object |
| 45 | +#endif |
| 46 | + |
| 47 | + |
| 48 | +void setup() { |
| 49 | + |
| 50 | + SERIAL_PORT.begin(115200); // Start the serial console |
| 51 | + SERIAL_PORT.println(F("ICM-20948 Example")); |
| 52 | + |
| 53 | + delay(100); |
| 54 | + |
| 55 | + while (SERIAL_PORT.available()) // Make sure the serial RX buffer is empty |
| 56 | + SERIAL_PORT.read(); |
| 57 | + |
| 58 | + SERIAL_PORT.println(F("Press any key to continue...")); |
| 59 | + |
| 60 | + while (!SERIAL_PORT.available()) // Wait for the user to press a key (send any serial character) |
| 61 | + ; |
| 62 | + |
| 63 | +#ifdef USE_SPI |
| 64 | + SPI_PORT.begin(); |
| 65 | +#else |
| 66 | + WIRE_PORT.begin(); |
| 67 | + WIRE_PORT.setClock(400000); |
| 68 | +#endif |
| 69 | + |
| 70 | + //myICM.enableDebugging(); // Uncomment this line to enable helpful debug messages on Serial |
| 71 | + |
| 72 | + bool initialized = false; |
| 73 | + while( !initialized ){ |
| 74 | + |
| 75 | + // Initialize the ICM-20948 |
| 76 | + // If the DMP is enabled, .begin performs a minimal startup. We need to configure the sample mode etc. manually. |
| 77 | +#ifdef USE_SPI |
| 78 | + myICM.begin( CS_PIN, SPI_PORT ); |
| 79 | +#else |
| 80 | + myICM.begin( WIRE_PORT, AD0_VAL ); |
| 81 | +#endif |
| 82 | + |
| 83 | + SERIAL_PORT.print( F("Initialization of the sensor returned: ") ); |
| 84 | + SERIAL_PORT.println( myICM.statusString() ); |
| 85 | + if( myICM.status != ICM_20948_Stat_Ok ){ |
| 86 | + SERIAL_PORT.println( "Trying again..." ); |
| 87 | + delay(500); |
| 88 | + }else{ |
| 89 | + initialized = true; |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + SERIAL_PORT.println("Device connected!"); |
| 94 | + |
| 95 | + // The ICM-20948 is awake and ready but hasn't been configured. Let's step through the configuration |
| 96 | + // sequence from InvenSense's _confidential_ Application Note "Programming Sequence for DMP Hardware Functions". |
| 97 | + |
| 98 | + bool success = true; // Use success to show if the configuration was successful |
| 99 | + |
| 100 | + // Configure clock source through PWR_MGMT_1 |
| 101 | + // ICM_20948_Clock_Auto selects the best available clock source – PLL if ready, else use the Internal oscillator |
| 102 | + success &= (myICM.setClockSource(ICM_20948_Clock_Auto) == ICM_20948_Stat_Ok); // This is shorthand: success will be set to false if setClockSource fails |
| 103 | + |
| 104 | + // Enable accel and gyro sensors through PWR_MGMT_2 |
| 105 | + // Enable Accelerometer (all axes) and Gyroscope (all axes) by writing zero to PWR_MGMT_2 |
| 106 | + uint8_t zero = 0; |
| 107 | + success &= (myICM.write(AGB0_REG_PWR_MGMT_2, &zero, 1) == ICM_20948_Stat_Ok); // Write one byte to the PWR_MGMT_2 register |
| 108 | + |
| 109 | + // Configure Gyro/Accel in Low Power Mode (cycled) with LP_CONFIG |
| 110 | + success &= (myICM.setSampleMode( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), ICM_20948_Sample_Mode_Cycled ) == ICM_20948_Stat_Ok); |
| 111 | + |
| 112 | + // Set Gyro FSR (Full scale range) to 2000dps through GYRO_CONFIG_1 |
| 113 | + // Set Accel FSR (Full scale range) to 4g through ACCEL_CONFIG |
| 114 | + ICM_20948_fss_t myFSS; // This uses a "Full Scale Settings" structure that can contain values for all configurable sensors |
| 115 | + myFSS.a = gpm4; // (ICM_20948_ACCEL_CONFIG_FS_SEL_e) |
| 116 | + // gpm2 |
| 117 | + // gpm4 |
| 118 | + // gpm8 |
| 119 | + // gpm16 |
| 120 | + myFSS.g = dps2000; // (ICM_20948_GYRO_CONFIG_1_FS_SEL_e) |
| 121 | + // dps250 |
| 122 | + // dps500 |
| 123 | + // dps1000 |
| 124 | + // dps2000 |
| 125 | + success &= (myICM.setFullScale( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), myFSS ) == ICM_20948_Stat_Ok); |
| 126 | + |
| 127 | + // Enable interrupt for FIFO overflow from FIFOs through INT_ENABLE_2 |
| 128 | + // If we see this interrupt, we'll need to reset the FIFO |
| 129 | + //success &= (myICM.intEnableOverflowFIFO( 0x1F ) == ICM_20948_Stat_Ok); // Enable the interrupt on all FIFOs |
| 130 | + |
| 131 | + // Turn off what goes into the FIFO through FIFO_EN_1, FIFO_EN_2 |
| 132 | + // Stop the peripheral data from being written to the FIFO by writing zero to FIFO_EN_1 |
| 133 | + success &= (myICM.write(AGB0_REG_FIFO_EN_1, &zero, 1) == ICM_20948_Stat_Ok); |
| 134 | + // Stop the accelerometer, gyro and temperature data from being written to the FIFO by writing zero to FIFO_EN_2 |
| 135 | + success &= (myICM.write(AGB0_REG_FIFO_EN_2, &zero, 1) == ICM_20948_Stat_Ok); |
| 136 | + |
| 137 | + // Turn off data ready interrupt through INT_ENABLE_1 |
| 138 | + success &= (myICM.intEnableRawDataReady(false) == ICM_20948_Stat_Ok); |
| 139 | + |
| 140 | + // Reset FIFO through FIFO_RST |
| 141 | + success &= (myICM.resetFIFO() == ICM_20948_Stat_Ok); |
| 142 | + |
| 143 | + // Set gyro sample rate divider with GYRO_SMPLRT_DIV |
| 144 | + // Set accel sample rate divider with ACCEL_SMPLRT_DIV_2 |
| 145 | + ICM_20948_smplrt_t mySmplrt; |
| 146 | + mySmplrt.g = 43; // ODR is computed as follows: 1.1 kHz/(1+GYRO_SMPLRT_DIV[7:0]). 43 = 25Hz |
| 147 | + mySmplrt.a = 44; // ODR is computed as follows: 1.125 kHz/(1+ACCEL_SMPLRT_DIV[11:0]). 44 = 25Hz |
| 148 | + //myICM.setSampleRate( (ICM_20948_Internal_Acc | ICM_20948_Internal_Gyr), mySmplrt ); // ** Note: comment this line to leave the sample rates at the maximum ** |
| 149 | + |
| 150 | + // Setup DMP start address through PRGM_STRT_ADDRH/PRGM_STRT_ADDRL |
| 151 | + success &= (myICM.setDMPstartAddress() == ICM_20948_Stat_Ok); // Defaults to DMP_START_ADDRESS |
| 152 | + |
| 153 | + // Now load the DMP firmware |
| 154 | + success &= (myICM.loadDMPFirmware() == ICM_20948_Stat_Ok); |
| 155 | + |
| 156 | + // Write the 2 byte Firmware Start Value to ICM PRGM_STRT_ADDRH/PRGM_STRT_ADDRL |
| 157 | + success &= (myICM.setDMPstartAddress() == ICM_20948_Stat_Ok); // Defaults to DMP_START_ADDRESS |
| 158 | + |
| 159 | + // Configure Accel scaling to DMP |
| 160 | + // The DMP scales accel raw data internally to align 1g as 2^25 |
| 161 | + // In order to align internal accel raw data 2^25 = 1g write 0x4000000 when FSR is 4g |
| 162 | + const unsigned char accScale[4] = {0x40, 0x00, 0x00, 0x00}; |
| 163 | + success &= (myICM.writeDMPmems(ACC_SCALE, 4, &accScale[0]) == ICM_20948_Stat_Ok); // Write 0x4000000 to ACC_SCALE DMP register |
| 164 | + // In order to output hardware unit data as configured FSR write 0x40000 when FSR is 4g |
| 165 | + const unsigned char accScale2[4] = {0x00, 0x04, 0x00, 0x00}; |
| 166 | + success &= (myICM.writeDMPmems(ACC_SCALE2, 4, &accScale2[0]) == ICM_20948_Stat_Ok); // Write 0x40000 to ACC_SCALE2 DMP register |
| 167 | + |
| 168 | + // Configure Compass mount matrix and scale to DMP |
| 169 | + // The mount matrix write to DMP register is used to align the compass axes with accel/gyro. |
| 170 | + // This mechanism is also used to convert hardware unit to uT. The value is expressed as 1uT = 2^30. |
| 171 | + // Each compass axis will be converted as below: |
| 172 | + // X = raw_x * CPASS_MTX_00 + raw_y * CPASS_MTX_01 + raw_z * CPASS_MTX_02 |
| 173 | + // Y = raw_x * CPASS_MTX_10 + raw_y * CPASS_MTX_11 + raw_z * CPASS_MTX_12 |
| 174 | + // Z = raw_x * CPASS_MTX_20 + raw_y * CPASS_MTX_21 + raw_z * CPASS_MTX_22 |
| 175 | + // Magnetometer full scale is +/- 4900uT so _I think_ we need to multiply by 2^30 / 4900 = 0x000357FA |
| 176 | + // The magnetometer Y and Z axes are reversed compared to the accelerometer so we'll invert those |
| 177 | + const unsigned char mountMultiplierZero[4] = {0x00, 0x00, 0x00, 0x00}; |
| 178 | + const unsigned char mountMultiplierPlus[4] = {0x00, 0x03, 0x57, 0xFA}; |
| 179 | + const unsigned char mountMultiplierMinus[4] = {0xFF, 0xFC, 0xA8, 0x05}; |
| 180 | + success &= (myICM.writeDMPmems(CPASS_MTX_00, 4, &mountMultiplierPlus[0]) == ICM_20948_Stat_Ok); |
| 181 | + success &= (myICM.writeDMPmems(CPASS_MTX_01, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 182 | + success &= (myICM.writeDMPmems(CPASS_MTX_02, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 183 | + success &= (myICM.writeDMPmems(CPASS_MTX_10, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 184 | + success &= (myICM.writeDMPmems(CPASS_MTX_11, 4, &mountMultiplierMinus[0]) == ICM_20948_Stat_Ok); |
| 185 | + success &= (myICM.writeDMPmems(CPASS_MTX_12, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 186 | + success &= (myICM.writeDMPmems(CPASS_MTX_20, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 187 | + success &= (myICM.writeDMPmems(CPASS_MTX_21, 4, &mountMultiplierZero[0]) == ICM_20948_Stat_Ok); |
| 188 | + success &= (myICM.writeDMPmems(CPASS_MTX_22, 4, &mountMultiplierMinus[0]) == ICM_20948_Stat_Ok); |
| 189 | + |
| 190 | + // Enable DMP interrupt |
| 191 | + // This would be the most efficient way of getting the DMP data, instead of polling the FIFO |
| 192 | + //success &= (myICM.intEnableDMP(true) == ICM_20948_Stat_Ok); |
| 193 | + |
| 194 | + // DMP sensor options are defined in ICM_20948_DMP.h |
| 195 | + // INV_ICM20948_SENSOR_ACCELEROMETER |
| 196 | + // INV_ICM20948_SENSOR_GYROSCOPE |
| 197 | + // INV_ICM20948_SENSOR_RAW_ACCELEROMETER |
| 198 | + // INV_ICM20948_SENSOR_RAW_GYROSCOPE |
| 199 | + // INV_ICM20948_SENSOR_MAGNETIC_FIELD_UNCALIBRATED |
| 200 | + // INV_ICM20948_SENSOR_GYROSCOPE_UNCALIBRATED |
| 201 | + // INV_ICM20948_SENSOR_ACTIVITY_CLASSIFICATON |
| 202 | + // INV_ICM20948_SENSOR_STEP_DETECTOR |
| 203 | + // INV_ICM20948_SENSOR_STEP_COUNTER |
| 204 | + // INV_ICM20948_SENSOR_GAME_ROTATION_VECTOR |
| 205 | + // INV_ICM20948_SENSOR_ROTATION_VECTOR |
| 206 | + // INV_ICM20948_SENSOR_GEOMAGNETIC_ROTATION_VECTOR |
| 207 | + // INV_ICM20948_SENSOR_GEOMAGNETIC_FIELD |
| 208 | + // INV_ICM20948_SENSOR_WAKEUP_SIGNIFICANT_MOTION |
| 209 | + // INV_ICM20948_SENSOR_FLIP_PICKUP |
| 210 | + // INV_ICM20948_SENSOR_WAKEUP_TILT_DETECTOR |
| 211 | + // INV_ICM20948_SENSOR_GRAVITY |
| 212 | + // INV_ICM20948_SENSOR_LINEAR_ACCELERATION |
| 213 | + // INV_ICM20948_SENSOR_ORIENTATION |
| 214 | + |
| 215 | + // Enable the DMP orientation sensor |
| 216 | + success &= (myICM.enableDMPSensor(INV_ICM20948_SENSOR_ORIENTATION) == ICM_20948_Stat_Ok); |
| 217 | + |
| 218 | + // Configuring DMP to output data at multiple ODRs: |
| 219 | + // DMP is capable of outputting multiple sensor data at different rates to FIFO. |
| 220 | + // Set the DMP Output Data Rate for Quat9 to 12Hz. |
| 221 | + success &= (myICM.setDMPODRrate(DMP_ODR_Reg_Quat9, 12) == ICM_20948_Stat_Ok); |
| 222 | + |
| 223 | + // Enable the FIFO |
| 224 | + success &= (myICM.enableFIFO() == ICM_20948_Stat_Ok); |
| 225 | + |
| 226 | + // Enable the DMP |
| 227 | + success &= (myICM.enableDMP() == ICM_20948_Stat_Ok); |
| 228 | + |
| 229 | + // Reset DMP |
| 230 | + success &= (myICM.resetDMP() == ICM_20948_Stat_Ok); |
| 231 | + |
| 232 | + // Reset FIFO |
| 233 | + success &= (myICM.resetFIFO() == ICM_20948_Stat_Ok); |
| 234 | + |
| 235 | + // Check success |
| 236 | + if( success ) |
| 237 | + SERIAL_PORT.println("DMP enabled!"); |
| 238 | + else |
| 239 | + { |
| 240 | + SERIAL_PORT.println("Enable DMP failed!"); |
| 241 | + } |
| 242 | + |
| 243 | +} |
| 244 | + |
| 245 | +void loop() |
| 246 | +{ |
| 247 | + // Read any DMP data waiting in the FIFO |
| 248 | + // Note: |
| 249 | + // readDMPdataFromFIFO will return ICM_20948_Stat_FIFONoDataAvail if no data or incomplete data is available. |
| 250 | + // If data is available, readDMPdataFromFIFO will attempt to read _one_ frame of DMP data. |
| 251 | + // readDMPdataFromFIFO will return ICM_20948_Stat_Ok if a valid frame was read. |
| 252 | + // readDMPdataFromFIFO will return ICM_20948_Stat_FIFOMoreDataAvail if a valid frame was read _and_ the FIFO contains more (unread) data. |
| 253 | + icm_20948_DMP_data_t data; |
| 254 | + myICM.readDMPdataFromFIFO(&data); |
| 255 | + |
| 256 | + if(( myICM.status == ICM_20948_Stat_Ok ) || ( myICM.status == ICM_20948_Stat_FIFOMoreDataAvail )) // Was valid data available? |
| 257 | + { |
| 258 | + //SERIAL_PORT.print(F("Received data! Header: 0x")); // Print the header in HEX so we can see what data is arriving in the FIFO |
| 259 | + //if ( data.header < 0x1000) SERIAL_PORT.print( "0" ); // Pad the zeros |
| 260 | + //if ( data.header < 0x100) SERIAL_PORT.print( "0" ); |
| 261 | + //if ( data.header < 0x10) SERIAL_PORT.print( "0" ); |
| 262 | + //SERIAL_PORT.println( data.header, HEX ); |
| 263 | + |
| 264 | + if ( (data.header & DMP_header_bitmap_Quat9) > 0 ) // We have asked for orientation data so we should receive Quat9 |
| 265 | + { |
| 266 | + // Q0 value is computed from this equation: Q0^2 + Q1^2 + Q2^2 + Q3^2 = 1. |
| 267 | + // In case of drift, the sum will not add to 1, therefore, quaternion data need to be corrected with right bias values. |
| 268 | + // The quaternion data is scaled by 2^30. |
| 269 | + |
| 270 | + //SERIAL_PORT.printf("Quat9 data is: Q1:%ld Q2:%ld Q3:%ld Accuracy:%d\r\n", data.Quat9.Data.Q1, data.Quat9.Data.Q2, data.Quat9.Data.Q3, data.Quat9.Data.Accuracy); |
| 271 | + |
| 272 | + // Scale to +/- 1 |
| 273 | + float q1 = ((float)data.Quat9.Data.Q1) / 1073741824.0; // Convert to float. Divide by 2^30 |
| 274 | + float q2 = ((float)data.Quat9.Data.Q2) / 1073741824.0; // Convert to float. Divide by 2^30 |
| 275 | + float q3 = ((float)data.Quat9.Data.Q3) / 1073741824.0; // Convert to float. Divide by 2^30 |
| 276 | + |
| 277 | + SERIAL_PORT.printf("Q1:%.3f Q2:%.3f Q3:%.3f\r\n", q1, q2, q3); |
| 278 | + } |
| 279 | + } |
| 280 | + |
| 281 | + if ( myICM.status != ICM_20948_Stat_FIFOMoreDataAvail ) // If more data is available then we should read it right away - and not delay |
| 282 | + { |
| 283 | + delay(10); |
| 284 | + } |
| 285 | +} |
0 commit comments