forked from ossamamehmood/Hacktoberfest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
136 lines (115 loc) Β· 4.74 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import random
import numpy as np
from collections import deque #ds for store our memory
from game import SnakeGameAI, Direction , Point
from model import DQN ,QTrainer
from helper import plot
MAX_MEMORY =100_000
BATCH_SIZE =1000
LR =0.001
class Agent:#need to store game ,model in agent
def __init__(self):
self.n_games =0#randomness
self.epsilon=0
self.gamma=0.9 #discount rate
self.memory=deque(maxlen=MAX_MEMORY)#popleft()
self.model=DQN(11,256,3)
self.trainer=QTrainer(self.model,lr=LR,gamma=self.gamma)
def get_state(self, game):
head = game.snake[0] #list ,points in all direction
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)#four points around head
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [ #11 states if danger is straight or ahead
# Danger straight
(dir_r and game.is_collision(point_r)) or #if go right we get collison also have danger here
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
# Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
# Move direction
dir_l,# one of them is true other is false
dir_r,
dir_u,
dir_d,
# Food location
game.food.x < game.head.x, # food left cherck whether food is left of us
game.food.x > game.head.x, # food right
game.food.y < game.head.y, # food up
game.food.y > game.head.y # food down
]
return np.array(state, dtype=int)
def remember(self,state,action,reward,next_state,done):
self.memory.append(state,action,reward,next_state,done)#popleft
def train_long_memory(self):
if len(self.memory)<BATCH_SIZE:
mini_sample=random.sample(self.memory,BATCH_SIZE) #list of tuples
else:
mini_sample=self.memory
states,actions,rewards,new_states,dones=zip(*mini_sample) #how zip fun work
self.trainer.train_step(states,actions,rewards,new_states,dones)
#for state,action,reward,next_state,done in mini_sample:
#self.trainer.train_step(state,action,reward,next_state,done)
def train_short_memory(self,state,action,reward,next_state,done):
self.trainer.train_step(state,action,reward,next_state,done)
def get_action(self,state):
#random moves :tradeoff exploration
self.epsilon=80-self.n_games
final_move=[0,0,0]
if random.randint(0,200)<self.epsilon:
move=random.randint(0,2)
final_move[move]=1
#more gamewe have small epsilon we get
#small epsilon we dont get random move
else:
state0=torch.tensor(state,dtype=torch.float)
prediction=self.model(state0)
#raw value
move=torch.argmax(prediction).item()#convert into 1 no
final_move=[move]=1
return final_move
def train():
plot_scores=[] #scores for ploting later
plot_mean_scores=[]
total_score=0
record=0
agent=Agent()
game=SnakeGameAI()
while True:
state_old=agent.get_state(game)
final_move=agent.get_action(state_old)
reward,done,score=game.play_step(final_move)
state_new=agent.get_state(game)
agent.train_short_memory(state_old,final_move,reward,state_new,done)
if done:
#train long memory ,plot
game.reset()
agent.n_games +=1
agent.train_long_memory()
if score > record:
record=score
agent.model.save()
print('Game',agent.n_games,'Score',score,'Record:',record)
plot_scores.append(score)
total_score +=score
mean_score=total_score/agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores,plot_mean_scores)
#we need model and trainer
if __name__=='__main__':
train()