forked from ossamamehmood/Hacktoberfest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN
62 lines (56 loc) · 2.21 KB
/
DQN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as f
import os
class DQN(nn.Module):
def __init__(self,input_size,hidden_size,output_size):
super().__init__()
self.linear1=nn.Linear(input_size,hidden_size)
self.linear2=nn.Linear(hidden_size,output_size)
def forward(self,x):
x=F.relu(self.linear1(x))
x=self.linear2(x)
return x
def save(self,file_name='model.pth'):
model_folder_path='./model'
if not os.path.exists(model_folder_path):
os.makedirs(model_folder_path)
file_name=os.path.join(model_folder_path,file_name)
torch.save(self.state_dict(),file_name)
class Qtrainer:
def __init__(self,model,lr,gamma):
self.lr=lr
self.gamma=gamma
self.model=model
self.optimizer=optim.Adam(model.parameters(),lr=self.lr)
self.criterion=nn.MSELoss()
def train_step(self,state,action,reward,next_state,done):
state=torch.tensor(state,dtype=torch.float)
next_state=torch.tensor(next_state,dtype=torch.float)
action=torch.tensor(action,dtype=torch.long)
reward=torch.tensor(reward,dtype=torch.float)
#we domnt want done as tensor
#(n,x) n dimension
if len(state.shape)==1:
#(1,x) 1 dimension using unsqueeze we can cnvt 1dim
state=torch.unsqueeze(state,0)
next_state=torch.unsqueeze(next_state,0)
action=torch.unsqueeze(action,0)
reward=torch.unsqueeze(reward,0)
done=(done,)
#1. predicted q value with current state
pred == self.model(state)
target=prd.clone()
for idx in range(len(done)):
Q_new=reward[idx]
if not done[idx]:
Q_new=reward[idx] + self.gamma * torch.max(self.model(next_state[idx]))
target[idx][torch.argmax(action).item()]=Q_new
#2: qnew= r+y *max(next_predicted q value)
#pred.clone()
#preds[argsmax(action)]=q_new
self.optimizer.zero_grad()
loss= self.criterion(target,pred)
loss.backward()
self.optimizer.step()