|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "ea4ae65a-d555-4b54-96f9-11eed006adc2", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "# %pip uninstall -y coniferest\n", |
| 11 | + "# %pip install 'git+https://github.com/snad-space/coniferest@fix-devent-celeba'" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "id": "3d9577061e9494ed", |
| 18 | + "metadata": { |
| 19 | + "ExecuteTime": { |
| 20 | + "end_time": "2024-03-13T15:41:49.204695Z", |
| 21 | + "start_time": "2024-03-13T15:41:49.201344Z" |
| 22 | + }, |
| 23 | + "collapsed": false, |
| 24 | + "jupyter": { |
| 25 | + "outputs_hidden": false |
| 26 | + } |
| 27 | + }, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "from collections import defaultdict\n", |
| 31 | + "\n", |
| 32 | + "import matplotlib.pyplot as plt\n", |
| 33 | + "import numpy as np\n", |
| 34 | + "from tqdm import tqdm\n", |
| 35 | + "\n", |
| 36 | + "from coniferest.aadforest import AADForest\n", |
| 37 | + "from coniferest.datasets import Dataset, DevNetDataset\n", |
| 38 | + "from coniferest.isoforest import IsolationForest\n", |
| 39 | + "from coniferest.label import Label\n", |
| 40 | + "from coniferest.pineforest import PineForest\n", |
| 41 | + "from coniferest.session.oracle import OracleSession, create_oracle_session" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 3, |
| 47 | + "id": "initial_id", |
| 48 | + "metadata": { |
| 49 | + "ExecuteTime": { |
| 50 | + "end_time": "2024-03-13T15:41:49.210919Z", |
| 51 | + "start_time": "2024-03-13T15:41:49.206277Z" |
| 52 | + } |
| 53 | + }, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "class Compare:\n", |
| 57 | + " models = {\n", |
| 58 | + " 'Isolation Forest': IsolationForest,\n", |
| 59 | + " 'AAD': AADForest,\n", |
| 60 | + " 'Pine Forest': PineForest,\n", |
| 61 | + " }\n", |
| 62 | + " \n", |
| 63 | + " def __init__(self, dataset: Dataset, *, iterations=100, n_jobs=-1):\n", |
| 64 | + " self.model_kwargs = {\n", |
| 65 | + " 'n_trees': 128,\n", |
| 66 | + " 'n_jobs': n_jobs,\n", |
| 67 | + " }\n", |
| 68 | + " self.session_kwargs = {\n", |
| 69 | + " 'data': dataset.data,\n", |
| 70 | + " 'labels': dataset.labels,\n", |
| 71 | + " 'max_iterations': iterations,\n", |
| 72 | + " }\n", |
| 73 | + " self.results = {}\n", |
| 74 | + " self.steps = np.arange(1, iterations + 1)\n", |
| 75 | + " self.total_anomaly_fraction = np.mean(dataset.labels == Label.A)\n", |
| 76 | + "\n", |
| 77 | + " def get_sessions(self, random_seed):\n", |
| 78 | + " model_kwargs = self.model_kwargs | {'random_seed': random_seed}\n", |
| 79 | + "\n", |
| 80 | + " return {\n", |
| 81 | + " name: create_oracle_session(model=model(**model_kwargs), **self.session_kwargs)\n", |
| 82 | + " for name, model in self.models.items()\n", |
| 83 | + " }\n", |
| 84 | + "\n", |
| 85 | + " def run(self, random_seeds):\n", |
| 86 | + " results = defaultdict(dict)\n", |
| 87 | + " \n", |
| 88 | + " for random_seed in tqdm(random_seeds):\n", |
| 89 | + " sessions = self.get_sessions(random_seed)\n", |
| 90 | + " for name, session in sessions.items():\n", |
| 91 | + " session.run()\n", |
| 92 | + " anomalies = np.cumsum(np.array(list(session.known_labels.values())) == Label.A)\n", |
| 93 | + " results[name][random_seed] = anomalies\n", |
| 94 | + "\n", |
| 95 | + " self.results |= results\n", |
| 96 | + " return self\n", |
| 97 | + " \n", |
| 98 | + " def plot(self, dataset_name: str, savefig=False):\n", |
| 99 | + " plt.figure(figsize=(8, 6))\n", |
| 100 | + " plt.title(f'Dataset: {dataset_name}')\n", |
| 101 | + "\n", |
| 102 | + " for name, anomalies_dict in self.results.items():\n", |
| 103 | + " anomalies = np.stack(list(anomalies_dict.values()))\n", |
| 104 | + " q10, median, q90 = np.quantile(anomalies, [0.1, 0.5, 0.9], axis = 0)\n", |
| 105 | + "\n", |
| 106 | + " plt.plot(self.steps, median, alpha=0.75, label=name)\n", |
| 107 | + " plt.fill_between(self.steps, q10, q90, alpha=0.5)\n", |
| 108 | + "\n", |
| 109 | + " plt.plot(self.steps, self.steps * self.total_anomaly_fraction, ls='--', color='grey', label='Theoretical radnom')\n", |
| 110 | + "\n", |
| 111 | + " plt.xlabel('Iteration')\n", |
| 112 | + " plt.ylabel('Number of anomalies')\n", |
| 113 | + " plt.grid()\n", |
| 114 | + " plt.legend()\n", |
| 115 | + " if savefig:\n", |
| 116 | + " plt.savefig(f'{dataset}.pdf')\n", |
| 117 | + " \n", |
| 118 | + " return self" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": null, |
| 124 | + "id": "71c337b3577915d5", |
| 125 | + "metadata": { |
| 126 | + "collapsed": false, |
| 127 | + "jupyter": { |
| 128 | + "outputs_hidden": false |
| 129 | + } |
| 130 | + }, |
| 131 | + "outputs": [ |
| 132 | + { |
| 133 | + "name": "stdout", |
| 134 | + "output_type": "stream", |
| 135 | + "text": [ |
| 136 | + "['donors', 'census', 'fraud', 'celeba', 'backdoor', 'campaign', 'thyroid']\n", |
| 137 | + "donors\n" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "name": "stderr", |
| 142 | + "output_type": "stream", |
| 143 | + "text": [ |
| 144 | + " 60%|██████████████████████████████████▏ | 12/20 [1:56:30<1:25:02, 637.84s/it]" |
| 145 | + ] |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "print(DevNetDataset.avialble_datasets)\n", |
| 150 | + "\n", |
| 151 | + "seeds = range(20)\n", |
| 152 | + "\n", |
| 153 | + "for dataset in DevNetDataset.avialble_datasets:\n", |
| 154 | + " print(dataset)\n", |
| 155 | + " %time compare = Compare(DevNetDataset(dataset), iterations=100, n_jobs=10).run(seeds).plot(dataset, savefig=True)\n", |
| 156 | + " plt.show()" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "id": "603f9b12-b5ca-470e-95ba-34e4c6571687", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "%time compare = Compare(DevNetDataset(\"thyroid\"), iterations=7200, n_jobs=15).run([0]).plot(f'{dataset}_full', savefig=True)\n", |
| 167 | + "plt.show()" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "code", |
| 172 | + "execution_count": null, |
| 173 | + "id": "7e7fb96f-b3a4-4f33-8389-466ad23b9da6", |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [] |
| 177 | + } |
| 178 | + ], |
| 179 | + "metadata": { |
| 180 | + "kernelspec": { |
| 181 | + "display_name": "Python 3 (ipykernel)", |
| 182 | + "language": "python", |
| 183 | + "name": "python3" |
| 184 | + }, |
| 185 | + "language_info": { |
| 186 | + "codemirror_mode": { |
| 187 | + "name": "ipython", |
| 188 | + "version": 3 |
| 189 | + }, |
| 190 | + "file_extension": ".py", |
| 191 | + "mimetype": "text/x-python", |
| 192 | + "name": "python", |
| 193 | + "nbconvert_exporter": "python", |
| 194 | + "pygments_lexer": "ipython3", |
| 195 | + "version": "3.12.3" |
| 196 | + } |
| 197 | + }, |
| 198 | + "nbformat": 4, |
| 199 | + "nbformat_minor": 5 |
| 200 | +} |
0 commit comments