-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_model_fakenews.py
34 lines (27 loc) · 1.02 KB
/
train_model_fakenews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pandas as pd
import numpy as np
import pickle
import itertools
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
df = pd.read_csv('news.csv')
df.columns = ['id','title','text','label']
# print(df.shape)
# print(df.head())
labels = df.label
X_train, X_test, y_train, y_test = train_test_split(df['text'],labels,test_size=1)
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.7)
# Fit and transform train set, transform test set
tfidf_train = tfidf_vectorizer.fit_transform(X_train)
tfidf_test = tfidf_vectorizer.transform(X_test)
# Initialize a PassiveAggressiveClassifier
pac = PassiveAggressiveClassifier(max_iter=50)
pac.fit(tfidf_train,y_train)
# saving vectorizer
with open('tfid.pickle','wb') as f:
pickle.dump(tfidf_vectorizer,f)
# saving model
with open('model_fakenews.pickle','wb') as f:
pickle.dump(pac,f)