-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_function.py
452 lines (329 loc) · 14.4 KB
/
ml_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# -*- coding: utf-8 -*-
"""ML function.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1GeLDE8egbID6JrHv8BnYnNIHxEqB2mT7
# ML function for metabolome predictions using Random Forests
"""
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install('dill')
install('shap==0.37.0')
install('scikit-learn-intelex')
install('pandas')
import pandas as pd
import time
import sklearn
import numpy as np
from sklearn.model_selection import StratifiedKFold
from collections import Counter
import scipy
install('missingno')
import missingno
install('adjustText')
from adjustText import adjust_text
np.random.seed(123)
import dill
import math
# machine learning
# from sklearnex import patch_sklearn, unpatch_sklearn
from sklearn.model_selection import train_test_split
from sklearn.multioutput import MultiOutputRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.feature_selection import SelectKBest
from multiprocessing import Pool
# Commented out IPython magic to ensure Python compatibility.
#If running code on Google Colab, mount drive to access data files
import os
from google.colab import drive
drive.mount('/content/drive')
#Name of folder that holds datasets
file_folder = 'your_file_folder'
file_path = '/content/drive/My\ Drive/' + file_folder
# %cd {file_path}
# Read in data (rows = cell lines, columns = features)
input_features = pd.read_csv('./your_file_here.csv',index_col=0)
metabolomics = pd.read_csv('./your_metabolomics_here.csv',index_col=0)
"""# Random Forests"""
scaler = StandardScaler()
def train_multiRegressCV(classifier, data, x_cols, y_cols, n_splits=5, pval_cutoff=0.05, scale_y=True):
# split into train and test data: all metabolites, median data
X = data.loc[:, x_cols]
y = data.loc[:, y_cols]
# create multi-output ridge regression model
if classifier=="RF":
model=RandomForestRegressor(random_state=0, n_estimators=100, n_jobs=-1, max_depth=10)
print("Training model with random forest!")
else:
print("Enter model type!")
sys.exit()
clf = MultiOutputRegressor(model)
cv = KFold(n_splits=n_splits,
shuffle=True,
random_state=123)
# create empty lists to store CV scores, confusion mat, etc.
df_y_test_all = pd.DataFrame(columns=y_cols)
df_y_pred_all = pd.DataFrame(columns=y_cols)
count = 1
# loop through cross-val folds
all_means = pd.DataFrame(index=x_cols)
for train_index, test_index in cv.split(X, y):
start_time = time.perf_counter()
print(count,flush=True)
X_trainCV, X_testCV = X.iloc[train_index], X.iloc[test_index]
y_trainCV, y_testCV = y.iloc[train_index], y.iloc[test_index]
X_trainCV = scaler.fit_transform(X_trainCV)
X_testCV = scaler.transform(X_testCV)
if scale_y:
y_trainCV = scaler.fit_transform(y_trainCV)
y_testCV = scaler.transform(y_testCV)
tmp_mdl = clf.fit(X_trainCV, y_trainCV)
y_predCV = tmp_mdl.predict(X_testCV)
df_pred_temp = pd.DataFrame(y_predCV, columns=y_cols)
df_test_temp = pd.DataFrame(y_testCV, columns=y_cols)
df_y_test_all = pd.concat([df_y_test_all, df_test_temp])
df_y_pred_all = pd.concat([df_y_pred_all, df_pred_temp])
count = count+1
finish_time = time.perf_counter()
print("CV fold finished in {} seconds".format(finish_time-start_time),flush=True)
#print("Shape of y_test:")
#print(df_y_test_all.shape)
#print("Calculating Pearson's R for each metabolite...")
r = []
for i, col in enumerate(y_cols):
r.append(scipy.stats.pearsonr(df_y_test_all.iloc[:,i], df_y_pred_all.iloc[:,i]))
df_results = pd.DataFrame(r, columns=['R','pval'], index=y_cols) # index=y_cols,
#print("Shape of results:")
#print(df_results.shape)
df_results['Significant'] = (df_results.pval < pval_cutoff) & (df_results.R > 0)
df_results['R2'] = df_results.R**2
X_final = scaler.fit_transform(X)
X_final = pd.DataFrame(X_final,columns=X.columns,index=X.index)
if scale_y:
y_final = scaler.fit_transform(y)
y_final = pd.DataFrame(y_final,columns=y.columns,index=y.index)
print("Training final model on dataset of {} samples and {} features".format(X_final.shape[0], X_final.shape[1]))
final_mdl = clf.fit(X_final, y_final)
return df_results, final_mdl
"""# Ridge and Lasso Regression"""
scaler = StandardScaler()
def train_tune_CV(classifier,data, x_cols, y_cols,
n_splits=5, pval_cutoff=0.05, alphas=[1e-2, 0.1, 1, 10, 100, 1000], scale_y=True):
# split into train and test data: all metabolites, median data
X = data.loc[:, x_cols]
y = data.loc[:, y_cols]
if classifier=="Ridge":
# create multi-output ridge regression model
model=Ridge(alpha=1.0, max_iter=None, tol=0.001, solver='auto', random_state=0)
elif classifier=="Lasso":
model=Lasso(alpha=1.0, max_iter=500, tol=0.001, random_state=0)
multi_ridge = MultiOutputRegressor(model)
hyperParameters = {'estimator__alpha':alphas}
gridSearch = GridSearchCV(multi_ridge, hyperParameters, scoring='r2', cv=5)
cv = KFold(n_splits=n_splits,
shuffle=True,
random_state=123)
# create empty lists to store CV scores, confusion mat, etc.
df_y_test_all = pd.DataFrame(columns=y_cols)
df_y_pred_all = pd.DataFrame(columns=y_cols)
count = 1
# loop through cross-val folds
all_means = pd.DataFrame(index=x_cols)
df_alpha_cv = pd.DataFrame()
df_r_cv = pd.DataFrame()
for count, (train_index, test_index) in enumerate(cv.split(X, y)):
print(count)
X_trainCV, X_testCV = X.iloc[train_index], X.iloc[test_index]
y_trainCV, y_testCV = y.iloc[train_index], y.iloc[test_index]
X_trainCV = scaler.fit_transform(X_trainCV)
X_testCV = scaler.transform(X_testCV)
if scale_y:
y_trainCV = scaler.fit_transform(y_trainCV)
y_testCV = scaler.transform(y_testCV)
#
tmp_mdl = gridSearch.fit(X_trainCV, y_trainCV)
# predict on CV-test set
y_predCV = tmp_mdl.predict(X_testCV)
# store tuned alpha values
my_alphas = []
r_cv = []
for i in range(len(tmp_mdl.best_estimator_.estimators_)):
my_alphas.append(tmp_mdl.best_estimator_.estimators_[i].get_params()['alpha'])
r_cv.append(scipy.stats.pearsonr(y_predCV[:,i], y_testCV[:,i])[0])
df_alpha_cv.loc[:,count] = my_alphas
df_r_cv.loc[:,count] = r_cv
# # calculate r2 for true vs predicted values of CV-test set
# tmp_scores = r2_score(y_testCV, y_predCV, multioutput='raw_values')
df_pred_temp = pd.DataFrame(y_predCV, columns=y_cols)
df_test_temp = pd.DataFrame(y_testCV, columns=y_cols)
df_y_test_all = pd.concat([df_y_test_all, df_test_temp])
df_y_pred_all = pd.concat([df_y_pred_all, df_pred_temp])
print("Calculating Pearson's R for each metabolite...")
r = []
for i, col in enumerate(y_cols):
r.append(scipy.stats.pearsonr(df_y_test_all.iloc[:,i], df_y_pred_all.iloc[:,i]))
df_results = pd.DataFrame(r, columns=['R','pval'], index=y_cols) # index=y_cols,
df_results['Significant'] = (df_results.pval < pval_cutoff) & (df_results.R > 0)
df_results['R2'] = df_results.R**2
print("For each metabolite, find CV fold with best R and get alpha...")
ix_best_fold = df_r_cv.idxmax(axis=1)
best_alphas = df_alpha_cv.values[np.arange(len(ix_best_fold)),ix_best_fold]
Counter(best_alphas)
#savetxt('best_alphas_phos.csv', best_alphas)
print("Training final models with best alphas...")
X_final = scaler.fit_transform(X)
X_final = pd.DataFrame(X_final,columns=X.columns,index=X.index)
if scale_y:
y_final = scaler.fit_transform(y)
y_final = pd.DataFrame(y_final,columns=y.columns,index=y.index)
final_mdls = list()
for i in range(len(best_alphas)):
if classifier=="Ridge":
model=Ridge(alpha=best_alphas[i], max_iter=None, tol=0.001, solver='auto', random_state=0)
else:
model=Lasso(alpha=best_alphas[i], max_iter=500, tol=0.001, random_state=0)
model.fit(X_final.iloc[:,:], y_final.iloc[:,i])
final_mdls.append(model)
return df_results, final_mdls, best_alphas
# Get feature names
feature_names = input_features.columns
my_metabs = metabolomics.columns
feature_cell_lines = input_features.index
my_metabs_cls = metabolomics.index
# merge features+metabs by cell lines
merged_data = pd.merge(input_features, metabolomics, left_index=True, right_index=True)
print(merged_data.shape,flush=True)
#%%
print("METAB:",flush=True)
print(metabolomics.shape,flush=True)
print("\nFeats:",flush=True)
print(input_features.shape,flush=True)
merged_feats_mets = pd.merge(input_features, metabolomics, left_index=True, right_index=True)
print(merged_feats_mets.shape,flush=True)
# Assign significance value (Bonferroni correction)
pval_cutoff_ccle = 0.05 / len(my_metabs)
results_df, model = train_multiRegressCV("RF",
data = merged_feats_mets,
x_cols = feature_names,
y_cols = my_metabs,
pval_cutoff = pval_cutoff_ccle,
n_splits = 5)
print("Metabolites below Bonferroni pval cutoff: {}".format(np.sum(results_df.Significant)),flush=True)
#%%
df = pd.DataFrame({"pearsons_r":results_df.R,
"model_pval":results_df.pval,
"metabolite_significant":results_df.Significant})
df.to_csv("./your_results.csv")
# save models
print("Saving models!",flush=True)
with open('./your_final_rf_model.pkl', 'wb') as f:
dill.dump(model, f)
print("Done!",flush=True)
"""# Example
Using CCLE Histone PTM Data and CCLE Metabolomics
"""
scaler = StandardScaler()
def train_multiRegressCV(classifier, data, x_cols, y_cols, n_splits=5, pval_cutoff=0.05, scale_y=True):
# split into train and test data: all metabolites, median data
X = data.loc[:, x_cols]
y = data.loc[:, y_cols]
# create multi-output ridge regression model
if classifier=="RF":
model=RandomForestRegressor(random_state=0, n_estimators=100, n_jobs=-1, max_depth=10)
print("Training model with random forest!")
else:
print("Enter model type!")
sys.exit()
clf = MultiOutputRegressor(model)
cv = KFold(n_splits=n_splits,
shuffle=True,
random_state=123)
# create empty lists to store CV scores, confusion mat, etc.
df_y_test_all = pd.DataFrame(columns=y_cols)
df_y_pred_all = pd.DataFrame(columns=y_cols)
count = 1
# loop through cross-val folds
all_means = pd.DataFrame(index=x_cols)
for train_index, test_index in cv.split(X, y):
start_time = time.perf_counter()
print(count,flush=True)
X_trainCV, X_testCV = X.iloc[train_index], X.iloc[test_index]
y_trainCV, y_testCV = y.iloc[train_index], y.iloc[test_index]
X_trainCV = scaler.fit_transform(X_trainCV)
X_testCV = scaler.transform(X_testCV)
if scale_y:
y_trainCV = scaler.fit_transform(y_trainCV)
y_testCV = scaler.transform(y_testCV)
tmp_mdl = clf.fit(X_trainCV, y_trainCV)
y_predCV = tmp_mdl.predict(X_testCV)
df_pred_temp = pd.DataFrame(y_predCV, columns=y_cols)
df_test_temp = pd.DataFrame(y_testCV, columns=y_cols)
df_y_test_all = pd.concat([df_y_test_all, df_test_temp])
df_y_pred_all = pd.concat([df_y_pred_all, df_pred_temp])
count = count+1
finish_time = time.perf_counter()
print("CV fold finished in {} seconds".format(finish_time-start_time),flush=True)
#print("Shape of y_test:")
#print(df_y_test_all.shape)
#print("Calculating Pearson's R for each metabolite...")
r = []
for i, col in enumerate(y_cols):
r.append(scipy.stats.pearsonr(df_y_test_all.iloc[:,i], df_y_pred_all.iloc[:,i]))
df_results = pd.DataFrame(r, columns=['R','pval'], index=y_cols) # index=y_cols,
#print("Shape of results:")
#print(df_results.shape)
df_results['Significant'] = (df_results.pval < pval_cutoff) & (df_results.R > 0)
df_results['R2'] = df_results.R**2
X_final = scaler.fit_transform(X)
X_final = pd.DataFrame(X_final,columns=X.columns,index=X.index)
if scale_y:
y_final = scaler.fit_transform(y)
y_final = pd.DataFrame(y_final,columns=y.columns,index=y.index)
print("Training final model on dataset of {} samples and {} features".format(X_final.shape[0], X_final.shape[1]))
final_mdl = clf.fit(X_final, y_final)
return df_results, final_mdl
features_file_path = "./CCLE_hist.csv"
metabolomics_file_path = "./CCLE_metabolomics_averages.csv"
input_features = pd.read_csv(features_file_path, index_col=0)
metabolomics = pd.read_csv(metabolomics_file_path, index_col=0)
# Get feature names
feature_names = input_features.columns
my_metabs = metabolomics.columns
feature_cell_lines = input_features.index
my_metabs_cls = metabolomics.index
# merge features+metabs by cell lines
merged_data = pd.merge(input_features, metabolomics, left_index=True, right_index=True)
print(merged_data.shape,flush=True)
#%%
print("METAB:",flush=True)
print(metabolomics.shape,flush=True)
print("\nFeats:",flush=True)
print(input_features.shape,flush=True)
merged_feats_mets = pd.merge(input_features, metabolomics, left_index=True, right_index=True)
print(merged_feats_mets.shape,flush=True)
# Assign significance value (Bonferroni correction)
pval_cutoff_ccle = 0.05 / len(my_metabs)
results_df, model = train_multiRegressCV("RF",
data = merged_feats_mets,
x_cols = feature_names,
y_cols = my_metabs,
pval_cutoff = pval_cutoff_ccle,
n_splits = 5)
print("Metabolites below Bonferroni pval cutoff: {}".format(np.sum(results_df.Significant)),flush=True)
#%%
df = pd.DataFrame({"pearsons_r":results_df.R,
"model_pval":results_df.pval,
"metabolite_significant":results_df.Significant})
df.to_csv("./CCLE_histone_results.csv")
# save models
print("Saving models!",flush=True)
with open('./CCLE_histone_model.pkl', 'wb') as f:
dill.dump(model, f)
print("Done!",flush=True)