|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +from __future__ import print_function, division |
| 4 | + |
| 5 | +import argparse |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +from torch.autograd import Variable |
| 9 | +from torchvision import datasets, models, transforms |
| 10 | +import os |
| 11 | + |
| 12 | + |
| 13 | +from torch.utils.data import dataloader, Dataset |
| 14 | +from PIL import Image |
| 15 | + |
| 16 | + |
| 17 | +def get_file_list(file_path_list, sort=True): |
| 18 | + """ |
| 19 | + Get list of file paths in one folder. |
| 20 | + :param file_path: A folder path or path list. |
| 21 | + :return: file list: File path list of |
| 22 | + """ |
| 23 | + import random |
| 24 | + if isinstance(file_path_list, str): |
| 25 | + file_path_list = [file_path_list] |
| 26 | + file_lists = [] |
| 27 | + for file_path in file_path_list: |
| 28 | + assert os.path.isdir(file_path) |
| 29 | + file_list = os.listdir(file_path) |
| 30 | + if sort: |
| 31 | + file_list.sort() |
| 32 | + else: |
| 33 | + random.shuffle(file_list) |
| 34 | + file_list = [file_path + file for file in file_list] |
| 35 | + file_lists.append(file_list) |
| 36 | + if len(file_lists) == 1: |
| 37 | + file_lists = file_lists[0] |
| 38 | + return file_lists |
| 39 | + |
| 40 | + |
| 41 | +class Gallery(Dataset): |
| 42 | + """ |
| 43 | + Images in database. |
| 44 | + """ |
| 45 | + |
| 46 | + def __init__(self, image_paths, transform=None): |
| 47 | + super().__init__() |
| 48 | + |
| 49 | + self.image_paths = image_paths |
| 50 | + self.transform = transform |
| 51 | + |
| 52 | + def __getitem__(self, index): |
| 53 | + image_path = self.image_paths[index] |
| 54 | + image = Image.open(image_path).convert('RGB') |
| 55 | + |
| 56 | + if self.transform is not None: |
| 57 | + image = self.transform(image) |
| 58 | + |
| 59 | + return image, image_path |
| 60 | + |
| 61 | + def __len__(self): |
| 62 | + return len(self.image_paths) |
| 63 | + |
| 64 | + |
| 65 | +def load_data(data_path, batch_size=1, shuffle=False, transform='default'): |
| 66 | + data_transform = transforms.Compose([ |
| 67 | + transforms.Resize(256), |
| 68 | + transforms.CenterCrop(224), |
| 69 | + transforms.ToTensor(), |
| 70 | + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
| 71 | + ]) if transform == 'default' else transform |
| 72 | + |
| 73 | + image_path_list = get_file_list(data_path) |
| 74 | + |
| 75 | + gallery_data = Gallery(image_paths=image_path_list, |
| 76 | + transform=data_transform, |
| 77 | + ) |
| 78 | + |
| 79 | + data_loader = dataloader.DataLoader(dataset=gallery_data, |
| 80 | + batch_size=batch_size, |
| 81 | + shuffle=shuffle, |
| 82 | + num_workers=0, |
| 83 | + ) |
| 84 | + return data_loader |
| 85 | + |
| 86 | + |
| 87 | +def extract_feature(model, dataloaders, use_gpu=True): |
| 88 | + features = torch.FloatTensor() |
| 89 | + path_list = [] |
| 90 | + |
| 91 | + use_gpu = use_gpu and torch.cuda.is_available() |
| 92 | + for img, path in dataloaders: |
| 93 | + img = img.cuda() if use_gpu else img |
| 94 | + input_img = Variable(img.cuda()) |
| 95 | + outputs = model(input_img) |
| 96 | + ff = outputs.data.cpu() |
| 97 | + # norm feature |
| 98 | + fnorm = torch.norm(ff, p=2, dim=1, keepdim=True) |
| 99 | + ff = ff.div(fnorm.expand_as(ff)) |
| 100 | + features = torch.cat((features, ff), 0) |
| 101 | + path_list += list(path) |
| 102 | + return features, path_list |
| 103 | + |
| 104 | + |
| 105 | +def extract_feature_query(model, img, use_gpu=True): |
| 106 | + c, h, w = img.size() |
| 107 | + img = img.view(-1,c,h,w) |
| 108 | + use_gpu = use_gpu and torch.cuda.is_available() |
| 109 | + img = img.cuda() if use_gpu else img |
| 110 | + input_img = Variable(img) |
| 111 | + outputs = model(input_img) |
| 112 | + ff = outputs.data.cpu() |
| 113 | + fnorm = torch.norm(ff,p=2,dim=1, keepdim=True) |
| 114 | + ff = ff.div(fnorm.expand_as(ff)) |
| 115 | + return ff |
| 116 | + |
| 117 | + |
| 118 | +def load_query_image(query_path): |
| 119 | + data_transforms = transforms.Compose([ |
| 120 | + transforms.Resize(256), |
| 121 | + transforms.CenterCrop(224), |
| 122 | + transforms.ToTensor(), |
| 123 | + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
| 124 | + ]) |
| 125 | + query_image = datasets.folder.default_loader(query_path) |
| 126 | + query_image = data_transforms(query_image) |
| 127 | + return query_image |
| 128 | + |
| 129 | + |
| 130 | +def load_model(pretrained_model=None, use_gpu=True): |
| 131 | + """ |
| 132 | +
|
| 133 | + :param check_point: Pretrained model path. |
| 134 | + :return: |
| 135 | + """ |
| 136 | + model = models.resnet50(pretrained=False) |
| 137 | + num_ftrs = model.fc.in_features |
| 138 | + add_block = [] |
| 139 | + add_block += [nn.Linear(num_ftrs, 30)] #number of training classes |
| 140 | + model.fc = nn.Sequential(*add_block) |
| 141 | + model.load_state_dict(torch.load(pretrained_model)) |
| 142 | + |
| 143 | + # remove the final fc layer |
| 144 | + model.fc = nn.Sequential() |
| 145 | + # change to test modal |
| 146 | + model = model.eval() |
| 147 | + use_gpu = use_gpu and torch.cuda.is_available() |
| 148 | + if use_gpu: |
| 149 | + model = model.cuda() |
| 150 | + return model |
| 151 | + |
| 152 | + |
| 153 | +# sort the images |
| 154 | +def sort_img(qf, gf): |
| 155 | + score = gf*qf |
| 156 | + score = score.sum(1) |
| 157 | + # predict index |
| 158 | + s, index = score.sort(dim=0, descending=True) |
| 159 | + s = s.cpu().data.numpy() |
| 160 | + import numpy as np |
| 161 | + s = np.around(s, 3) |
| 162 | + return s, index |
| 163 | + |
| 164 | + |
| 165 | +if __name__ == '__main__': |
| 166 | + |
| 167 | + # Prepare data. |
| 168 | + data_loader = load_data(data_path='./test_pytorch/gallery/images/', |
| 169 | + batch_size=2, |
| 170 | + shuffle=False, |
| 171 | + transform='default', |
| 172 | + ) |
| 173 | + |
| 174 | + # Prepare model. |
| 175 | + model = load_model(pretrained_model='./model/ft_ResNet50/net_best.pth', use_gpu=True) |
| 176 | + |
| 177 | + # Extract database features. |
| 178 | + gallery_feature, image_paths = extract_feature(model=model, dataloaders=data_loader) |
| 179 | + |
| 180 | + # Query. |
| 181 | + query_image = load_query_image('./test_pytorch/query/query.jpg') |
| 182 | + |
| 183 | + # Extract query features. |
| 184 | + query_feature = extract_feature_query(model=model, img=query_image) |
| 185 | + |
| 186 | + # Sort. |
| 187 | + similarity, index = sort_img(query_feature, gallery_feature) |
| 188 | + |
| 189 | + sorted_paths = [image_paths[i] for i in index] |
| 190 | + print(sorted_paths) |
| 191 | + |
0 commit comments