diff --git a/Satellite_Orbits_3rd_Projects.py b/Satellite_Orbits_3rd_Projects.py new file mode 100644 index 0000000..37fd85f --- /dev/null +++ b/Satellite_Orbits_3rd_Projects.py @@ -0,0 +1,89 @@ +import numpy as np +import matplotlib.pyplot as plt +from mpl_toolkits.mplot3d import Axes3D +from mpl_toolkits.mplot3d.art3d import Poly3DCollection +from matplotlib.animation import FuncAnimation + +# Earth parameters +earth_radius = 6371 # Earth radius in kilometers +rotation_period = 24 # Earth rotation period in hours + +# Satellite orbit data +satellites = [ + {"semi_major_axis": 800, "eccentricity": 0.1, "inclination": 45, "argument_of_periapsis": 0, "ascending_node": 0}, + {"semi_major_axis": 1000, "eccentricity": 0.2, "inclination": 60, "argument_of_periapsis": 0, "ascending_node": 120}, + {"semi_major_axis": 1200, "eccentricity": 0.3, "inclination": 75, "argument_of_periapsis": 0, "ascending_node": 240}, + {"semi_major_axis": 1400, "eccentricity": 0.15, "inclination": 30, "argument_of_periapsis": 0, "ascending_node": 60}, + {"semi_major_axis": 1600, "eccentricity": 0.25, "inclination": 50, "argument_of_periapsis": 0, "ascending_node": 180}, +] + +# Time array +num_frames = 100 +time = np.linspace(0, 2 * np.pi, num_frames) + +# Initialize the plot +fig = plt.figure() +ax = fig.add_subplot(111, projection='3d') + +# Earth surface coordinates +u = np.linspace(0, 2 * np.pi, 100) +v = np.linspace(0, np.pi, 50) +x_earth = earth_radius * np.outer(np.cos(u), np.sin(v)) +y_earth = earth_radius * np.outer(np.sin(u), np.sin(v)) +z_earth = earth_radius * np.outer(np.ones(np.size(u)), np.cos(v)) + +# Plot Earth surface +earth = ax.plot_surface(x_earth, y_earth, z_earth, color='lightblue', alpha=0.8) + +# Initialize satellite lines +satellite_lines = [] + +# Plotting the satellite orbits +for satellite in satellites: + semi_major_axis = satellite["semi_major_axis"] + eccentricity = satellite["eccentricity"] + inclination = satellite["inclination"] + argument_of_periapsis = satellite["argument_of_periapsis"] + ascending_node = satellite["ascending_node"] + + # Parametric equations for satellite orbit + r = semi_major_axis * (1 - eccentricity**2) / (1 + eccentricity * np.cos(time)) + x_satellite = r * (np.cos(ascending_node) * np.cos(argument_of_periapsis + time) - np.sin(ascending_node) * np.sin(argument_of_periapsis + time) * np.cos(inclination)) + y_satellite = r * (np.sin(ascending_node) * np.cos(argument_of_periapsis + time) + np.cos(ascending_node) * np.sin(argument_of_periapsis + time) * np.cos(inclination)) + z_satellite = r * (np.sin(argument_of_periapsis + time) * np.sin(inclination)) + + # Plot the satellite orbit + satellite_line, = ax.plot(x_satellite, y_satellite, z_satellite, color='red', linewidth=1) + satellite_lines.append(satellite_line) + +# Animation update function +def update(frame): + # Rotate Earth around the Z-axis + angle = (360 / rotation_period) * frame / num_frames + x_earth_rotated = x_earth * np.cos(np.radians(angle)) - y_earth * np.sin(np.radians(angle)) + y_earth_rotated = x_earth * np.sin(np.radians(angle)) + y_earth * np.cos(np.radians(angle)) + z_earth_rotated = z_earth + + # Update Earth surface plot + earth._verts3d = x_earth_rotated, y_earth_rotated, z_earth_rotated + + # Update satellite orbits + for i, satellite_line in enumerate(satellite_lines): + satellite_line.set_data(x_satellite[:frame+1], y_satellite[:frame+1]) + satellite_line.set_3d_properties(z_satellite[:frame+1]) + + return earth, satellite_lines + +# Set plot labels and limits +ax.set_xlabel('X (km)') +ax.set_ylabel('Y (km)') +ax.set_zlabel('Z (km)') +ax.set_title('Satellite Orbits') + +# Set plot aspect ratio to be equal +ax.set_box_aspect([1, 1, 1]) + +# Create animation +animation = FuncAnimation(fig, update, frames=num_frames, interval=100) + +plt.show()