-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcontroller.py
502 lines (440 loc) · 20.8 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Based upon the iLQR implementation at https://github.com/anassinator/ilqr
"""Controllers."""
import six
import abc
import warnings
import math
import numpy as np
import tensorflow as tf
from scipy.linalg import block_diag
@six.add_metaclass(abc.ABCMeta)
class BaseController():
"""Base trajectory optimizer controller."""
@abc.abstractmethod
def fit(self, x0, us_init, *args, **kwargs):
"""Computes the optimal controls.
Args:
x0: Initial state [state_size].
us_init: Initial control path [N, action_size].
*args, **kwargs: Additional positional and key-word arguments.
Returns:
Tuple of
xs: optimal state path [N+1, state_size].
us: optimal control path [N, action_size].
"""
raise NotImplementedError
class iLQR(BaseController):
"""Finite Horizon Iterative Linear Quadratic Regulator."""
def __init__(self, args, net, sess, cost, max_reg=1e10, worst_case=False):
"""Constructs an iLQR solver.
Args:
args: Various arguments and specifications
net: Neural network dynamics model
sess: TensorFlow session
cost: Cost function.
max_reg: Maximum regularization term to break early due to
divergence. This can be disabled by setting it to None.
worst_case: whether to optimize for worst-case cost, otherwise will
optimize for expected cost
"""
self.net = net
self.sess = sess
self.cost = cost
self.H = args.mpc_horizon
self.seq_length = args.seq_length
self.num_models = args.num_models
self.worst_case = worst_case
if self.num_models == 1: self.worst_case = False
self.state_dim = args.latent_dim
self.full_state_dim = args.state_dim
self.action_dim = args.action_dim
self.batch_size = args.batch_size
self.gamma = args.gamma
self.action_max = args.action_max
# Regularization terms
self._mu = 1.0
self._mu_min = 1e-6
self._mu_max = max_reg
self._delta_0 = 2.0
self._delta = self._delta_0
self._k = np.zeros((self.H, self.action_dim))
if self.worst_case:
self._K = np.zeros((self.H, self.action_dim, self.state_dim))
else:
self._K = np.zeros((self.H, self.action_dim, self.state_dim*self.num_models))
super(iLQR, self).__init__()
def fit(self, x0, us_init, A, B, n_iterations=100, tol=1e-6, on_iteration=None):
"""Computes the optimal controls.
Args:
x0: Initial state [num_models*state_dim].
us_init: Initial control path [H, action_dim].
A: dynamics A-matrix [state_dim, latent_dim]
B: dynamics B-matrix [state_dim, action_dim]
n_iterations: Maximum number of interations. Default: 100.
tol: Tolerance. Default: 1e-6.
on_iteration: Callback at the end of each iteration with the
following signature:
(iteration_count, x, J_opt, accepted, converged) -> None
where:
iteration_count: Current iteration count.
xs: Current state path.
us: Current action path.
J_opt: Optimal cost-to-go.
accepted: Whether this iteration yielded an accepted result.
converged: Whether this iteration converged successfully.
Default: None.
Returns:
Tuple of
xs: optimal state path [H+1, num_models*state_dim].
us: optimal control path [H, action_dim].
L_opt: optimal predicted cost
"""
# Reset regularization term.
self._mu = 1.0
self._delta = self._delta_0
# Backtracking line search candidates 0 < alpha <= 1.
alphas = 1.1**(-np.arange(10)**2)
us = us_init.copy()
k = self._k
K = self._K
states = None
changed = True
converged = False
for iteration in range(n_iterations):
accepted = False
# Forward rollout only if it needs to be recomputed.
if changed:
(xs, A_stack, B_stack, L, L_x, L_u, L_xx, L_ux, L_uu) = self._forward_rollout(x0, us, A, B)
L_opt = L
J_opt = L.sum()
changed = False
try:
# Backward pass (only use first model if optimizing for worst-case cost)
if self.worst_case:
k, K = self._backward_pass(A_stack[:self.state_dim, :self.state_dim], B_stack[:self.state_dim],\
L_x[:, :self.state_dim], L_u, L_xx[:, :self.state_dim, :self.state_dim],\
L_ux[:, :, :self.state_dim], L_uu, us)
else:
k, K = self._backward_pass(A_stack, B_stack, L_x, L_u, L_xx, L_ux, L_uu, us)
# Backtracking line search.
for alpha in alphas:
xs_new, us_new = self._control(xs, us, A_stack, B_stack, k, K, alpha)
L_new = self._trajectory_cost(xs_new, us_new)
J_new = sum(L_new)
if J_new < J_opt:
if np.abs((J_opt - J_new) / J_opt) < tol:
converged = True
J_opt = J_new
L_opt = L_new
xs = xs_new
us = us_new
changed = True
# Decrease regularization term.
self._delta = min(1.0, self._delta) / self._delta_0
self._mu *= self._delta
if self._mu <= self._mu_min:
self._mu = 0.0
# Accept this.
accepted = True
break
except np.linalg.LinAlgError as e:
# Quu was not positive-definite and this diverged.
# Try again with a higher regularization term.
warnings.warn(str(e))
if not accepted:
# Increase regularization term.
self._delta = max(1.0, self._delta) * self._delta_0
self._mu = max(self._mu_min, self._mu * self._delta)
if self._mu_max and self._mu >= self._mu_max:
warnings.warn("exceeded max regularization term")
break
if on_iteration:
on_iteration(iteration, xs, us, J_opt, accepted, converged)
if converged:
break
# Store fit parameters.
self._k = k
self._K = K
self._nominal_xs = xs
self._nominal_us = us
return xs, us, L_opt
def _control(self, xs, us, A_stack, B_stack, k, K, alpha=1.0):
"""Applies the controls for a given trajectory.
Args:
xs: Nominal state path [H+1, num_models*state_dim].
us: Nominal control path [H, action_dim].
A_stack: A-matrix for augmented dynamics [num_models*state_dim, num_models*state_dim]
B_stack: B-matrix for augmented dynamics [num_models*state_dim, action_dim]
k: Feedforward gains [H, action_dim].
K: Feedback gains [H, action_size, state_dim].
alpha: Line search coefficient.
Returns:
Tuple of
xs: state path [H+1, num_models*state_dim].
us: control path [H, action_dim].
"""
xs_new = np.zeros_like(xs)
us_new = np.zeros_like(us)
xs_new[0] = xs[0].copy()
# Find new action and state trajectory
for i in range(self.H):
if self.worst_case:
us_new[i] = us[i] + alpha * (k[i] + K[i].dot(xs_new[i, :self.state_dim] - xs[i, :self.state_dim]))
else:
us_new[i] = us[i] + alpha * (k[i] + K[i].dot(xs_new[i] - xs[i]))
# Eq (8c).
xs_new[i + 1] = np.dot(A_stack, xs_new[i]) + np.dot(B_stack, self.action_max*np.tanh(us_new[i]))
return xs_new, us_new
def _trajectory_cost(self, xs, us):
"""Computes the given trajectory's cost.
Args:
xs: State path [H+1, state_dim].
us: Control path [H, action_dim].
Returns:
Trajectory's total cost.
"""
# Reshape matrix containing state trajectory
xs = xs.reshape(self.H+1, -1, self.state_dim).transpose(1, 0, 2)
# Find number of passes to be made through network
num_models = len(xs)
n_passes = int(math.ceil(num_models/float(self.batch_size)))
# Initialize arrays for network input and output
states = np.zeros((self.batch_size*n_passes, self.H+1, self.full_state_dim))
x_in = np.zeros((self.batch_size*n_passes, self.seq_length, self.state_dim))
# Feed in latent states and get out full state values
x_in[:num_models, :self.H] = xs[:, :self.H]
xT_in = np.zeros((self.batch_size*n_passes, self.state_dim))
xT_in[:num_models] = xs[:, -1]
for n in range(n_passes):
feed_in = {}
feed_in[self.net.z_vals_reshape] = x_in[n*self.batch_size:(n+1)*self.batch_size]
feed_in[self.net.z1] = xT_in[n*self.batch_size:(n+1)*self.batch_size]
feed_out = [self.net.x_pred_init, self.net.rec_state]
x_rec, xT_rec = self.sess.run(feed_out, feed_in)
states[self.batch_size*n:(self.batch_size*(n+1)), :self.H] = x_rec[:, :self.H]
states[self.batch_size*n:(self.batch_size*(n+1)), self.H] = xT_rec
if self.worst_case:
states = states[:1]
else:
states = states[:num_models]
# Use external function to calculate cost
cost = self.cost(states, us, self.gamma)
return cost
def _forward_rollout(self, x0, us, A, B):
"""Apply the forward dynamics to have a trajectory from the starting
state x0 by applying the control path us.
Args:
x0: Initial state [state_dim].
us: Control path [H, action_dim].
A: Set of A-matrices [num_models, state_dim, state_dim].
B: Set of B-matrices [num_models, state_dim, action_dim].
Returns:
Tuple of:
xs, A_stack, B_stack, L, L_x, L_u, L_xx, L_ux, L_uu
xs: State path [H+1, state_dim].
A_stack: A-matrix describing augmented dynamics
[num_models*state_dim, num_models*state_dim].
B_stack: B-matrix describing augmented dynamics
[num_models*state_dim, action_dim].
L: Cost path [H+1].
L_x: Jacobian of cost path w.r.t. x [H+1, num_models*state_dim].
L_u: Jacobian of cost path w.r.t. u [H, action_dim].
L_xx: Hessian of cost path w.r.t. x, x
[H+1, num_models*state_dim, num_models*state_dim].
L_ux: Hessian of cost path w.r.t. u, x
[H, action_dim, num_models*state_dim].
L_uu: Hessian of cost path w.r.t. u, u
[H, action_dim, action_dim].
"""
# Find number of times to do pass through network
n_passes = int(math.ceil(self.num_models/float(self.batch_size)))
# Pad us with zeros
us = np.concatenate((us, np.zeros((self.seq_length - self.H, self.action_dim))), axis=0)
# Construct arrays of A-matrices and B-matrices to feed into network
A_mats = np.zeros((self.batch_size*n_passes, self.state_dim, self.state_dim))
A_mats[:self.num_models] = A
B_mats = np.zeros((self.batch_size*n_passes, self.action_dim, self.state_dim))
B_mats[:self.num_models] = B
x0_vals = np.zeros((self.batch_size*n_passes, self.state_dim))
x0_vals[:self.num_models] = x0
u_vals = np.zeros((self.batch_size*n_passes, self.H, self.action_dim))
u_vals[:] = us
# Initialize arrays to hold all loss arrays and states
L_arr = np.zeros((self.batch_size*n_passes, self.H+1))
L_x_arr = np.zeros((self.batch_size*n_passes, self.H+1, self.state_dim))
L_u_arr = np.zeros((self.batch_size*n_passes, self.H, self.action_dim))
L_xx_arr = np.zeros((self.batch_size*n_passes, self.H+1, self.state_dim, self.state_dim))
L_ux_arr = np.zeros((self.batch_size*n_passes, self.H, self.action_dim, self.state_dim))
L_uu_arr = np.zeros((self.batch_size*n_passes, self.H, self.action_dim, self.action_dim))
xs_arr = np.zeros((self.batch_size*n_passes, self.H+1, self.state_dim))
# Perform necessary number of passes through network
for n in range(n_passes):
feed_in = {}
feed_in[self.net.A] = A_mats[n*self.batch_size:(n+1)*self.batch_size]
feed_in[self.net.B] = B_mats[n*self.batch_size:(n+1)*self.batch_size]
feed_in[self.net.z1] = x0_vals[n*self.batch_size:(n+1)*self.batch_size]
feed_in[self.net.u_ilqr] = u_vals[n*self.batch_size:(n+1)*self.batch_size]
feed_out = [self.net.L, self.net.L_x, self.net.L_u, self.net.L_xx, self.net.L_ux, self.net.L_uu, self.net.xs]
L, L_x, L_u, L_xx, L_ux, L_uu, xs = self.sess.run(feed_out, feed_in)
L_arr[self.batch_size*n:(self.batch_size*(n+1))] = L
L_x_arr[self.batch_size*n:(self.batch_size*(n+1))] = L_x
L_u_arr[self.batch_size*n:(self.batch_size*(n+1))] = L_u
L_xx_arr[self.batch_size*n:(self.batch_size*(n+1))] = L_xx
L_ux_arr[self.batch_size*n:(self.batch_size*(n+1))] = L_ux
L_uu_arr[self.batch_size*n:(self.batch_size*(n+1))] = L_uu
xs_arr[self.batch_size*n:(self.batch_size*(n+1))] = xs
# Extract desired number sets for each array
L_arr = L_arr[:self.num_models]
L_x_arr = L_x_arr[:self.num_models]
L_u_arr = L_u_arr[:self.num_models]
L_xx_arr = L_xx_arr[:self.num_models]
L_ux_arr = L_ux_arr[:self.num_models]
L_uu_arr = L_uu_arr[:self.num_models]
xs_arr = xs_arr[:self.num_models]
# Identify outliers (any model that predicts a cost greater than twice the median)
sum_cost = np.sum(L_arr, axis=1)
cost_median = np.median(sum_cost)
candidates = sum_cost * (sum_cost <= 2.0*cost_median)
# If optimizing for worst case, replace all models with model with highest predicted cost (excluding outliers)
if self.worst_case:
max_idx = np.argmax(candidates)
L_arr[:] = L_arr[max_idx]
L_x_arr[:] = L_x_arr[max_idx]
L_u_arr[:] = L_u_arr[max_idx]
L_xx_arr[:] = L_xx_arr[max_idx]
L_ux_arr[:] = L_ux_arr[max_idx]
L_uu_arr[:] = L_uu_arr[max_idx]
xs_arr[:] = xs_arr[max_idx]
A[:] = A[max_idx]
B[:] = B[max_idx]
else:
# For expected cost, use all non-outlier models
L_arr = L_arr[candidates > 0]
L_x_arr = L_x_arr[candidates > 0]
L_u_arr = L_u_arr[candidates > 0]
L_xx_arr = L_xx_arr[candidates > 0]
L_ux_arr = L_ux_arr[candidates > 0]
L_uu_arr = L_uu_arr[candidates > 0]
xs_arr = xs_arr[candidates > 0]
A = A[candidates > 0]
B = B[candidates > 0]
# Find number of remaining models
num_models = len(L_arr)
# Initialize and fill in arrays to hold cost quantities
L = np.mean(L_arr, axis=0)
L_x = np.zeros((self.H+1, num_models*self.state_dim))
L_xx = np.zeros((self.H+1, num_models*self.state_dim, num_models*self.state_dim))
L_ux = np.zeros((self.H, self.action_dim, num_models*self.state_dim))
L_u = L_u_arr[0]
L_uu = L_uu_arr[0]
xs = np.zeros((self.H+1, num_models*self.state_dim))
for t in range(self.H+1):
L_x[t] = L_x_arr[:, t].reshape(num_models*self.state_dim)/num_models
L_xx[t] = block_diag(*L_xx_arr[:, t])/num_models
xs[t] = xs_arr[:, t].reshape(num_models*self.state_dim)
if t < self.H:
L_ux[t] = L_ux_arr[:, t].transpose(1, 0, 2).reshape(self.action_dim, num_models*self.state_dim)/num_models
# Reshape A and B to have dimensionality appropriate for augmented state
A_stack = block_diag(*A.transpose(0, 2, 1))
B_stack = B.transpose(0, 2, 1).reshape(num_models*self.state_dim, self.action_dim)
return xs, A_stack, B_stack, L, L_x, L_u, L_xx, L_ux, L_uu
def _backward_pass(self,
A_stack,
B_stack,
L_x,
L_u,
L_xx,
L_ux,
L_uu,
us):
"""Computes the feedforward and feedback gains k and K.
Args:
A_stack: A-matrix describing augmented dynamics
[num_models*state_dim, num_models*state_dim].
B_stack: B-matrix describing augmented dynamics
[num_models*state_dim, action_dim].
L_x: Jacobian of cost path w.r.t. x [H+1, num_models*state_dim].
L_u: Jacobian of cost path w.r.t. u [H, action_dim].
L_xx: Hessian of cost path w.r.t. x, x
[H+1, num_models*state_dim, num_models*state_dim].
L_ux: Hessian of cost path w.r.t. u, x [H, action_dim, num_models*state_dim].
L_uu: Hessian of cost path w.r.t. u, u
[H, action_dim, action_dim].
Returns:
Tuple of
k: feedforward gains [H, action_dim].
K: feedback gains [H, action_dim, state_dim].
"""
V_x = L_x[-1]
V_xx = L_xx[-1]
k = np.empty_like(self._k)
K = np.zeros((self.H, self.action_dim, len(A_stack)))
for i in range(self.H - 1, -1, -1):
f_u = self.action_max*B_stack*(1 - np.tanh(us[i])**2)
f_uu = -2*np.tanh(us[i])*f_u
Q_x, Q_u, Q_xx, Q_ux, Q_uu = self._Q(A_stack, f_u, f_uu, L_x[i],
L_u[i], L_xx[i], L_ux[i],
L_uu[i], V_x, V_xx)
# Eq (6).
try:
k[i] = -np.linalg.solve(Q_uu, Q_u)
K[i] = -np.linalg.solve(Q_uu, Q_ux)
except:
pdb.set_trace()
# Eq (11b).
V_x = Q_x + K[i].T.dot(Q_uu).dot(k[i])
V_x += K[i].T.dot(Q_u) + Q_ux.T.dot(k[i])
# Eq (11c).
V_xx = Q_xx + K[i].T.dot(Q_uu).dot(K[i])
V_xx += K[i].T.dot(Q_ux) + Q_ux.T.dot(K[i])
V_xx = 0.5 * (V_xx + V_xx.T) # To maintain symmetry.
return np.array(k), np.array(K)
def _Q(self,
A_stack,
f_u,
f_uu,
l_x,
l_u,
l_xx,
l_ux,
l_uu,
V_x,
V_xx):
"""Computes second order expansion.
Args:
A_stack: A-matrix describing augmented dynamics
[num_models*state_dim, num_models*state_dim].
f_u: Jacobian of state w.r.t. u [num_models*state_dim, action_dim].
f_uu: 2nd deriv of state w.r.t. u [num_models*state_dim, action_dim].
l_x: Jacobian of cost path w.r.t. x [num_models*state_dim].
l_u: Jacobian of cost path w.r.t. u [action_dim].
l_xx: Hessian of cost path w.r.t. x, x
[num_models*state_dim, num_models*state_dim].
l_ux: Hessian of cost path w.r.t. u, x [action_dim, num_models*state_dim].
l_uu: Hessian of cost path w.r.t. u, u
[action_dim, action_dim].
V_x: Jacobian of the value function at the next time step
[num_models*state_dim].
V_xx: Hessian of the value function at the next time step w.r.t.
x, x [num_models*state_dim, num_models*state_dim].
Returns:
Tuple of
Q_x: [num_models*state_dim].
Q_u: [action_dim].
Q_xx: [num_models*state_dim, num_models*state_dim].
Q_ux: [action_dim, num_models*state_dim].
Q_uu: [action_dim, action_dim].
"""
# Eqs (5a), (5b) and (5c).
Q_x = l_x + A_stack.T.dot(V_x)
Q_u = l_u + f_u.T.dot(V_x)
Q_xx = l_xx + A_stack.T.dot(V_xx).dot(A_stack)
# Eqs (11b) and (11c).
if self.worst_case:
reg = self._mu * np.eye(self.state_dim)
else:
reg = self._mu * np.eye(len(A_stack))
Q_ux = l_ux + f_u.T.dot(V_xx + reg).dot(A_stack)
Q_uu = l_uu + f_u.T.dot(V_xx + reg).dot(f_u)
Q_uu += np.tensordot(V_x, f_uu, axes=1)
return Q_x, Q_u, Q_xx, Q_ux, Q_uu