-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
296 lines (262 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import numpy as np
import time
import tensorflow as tf
import subprocess
import glob
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Flatten, Reshape
from keras.layers import Conv2D, Conv2DTranspose, UpSampling2D
from keras.layers import LeakyReLU, Dropout
from keras.layers import BatchNormalization
from keras.optimizers import Adam, RMSprop
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
class ElapsedTimer(object):
"""Displays state of execution on the CLI"""
def __init__(self):
self.start_time = time.time()
def elapsed(self,sec):
if sec < 60:
return str(sec) + " sec"
elif sec < (60 * 60):
return str(sec / 60) + " min"
else:
return str(sec / (60 * 60)) + " hr"
def elapsed_time(self):
print("Elapsed: %s " % self.elapsed(time.time() - self.start_time) )
class DCGAN(object):
"""Class object for the GAN network"""
def __init__(self, img_rows=256, img_cols=256, channel=3):
self.img_rows = img_rows
self.img_cols = img_cols
self.channel = channel
self.D = None # discriminator
self.G = None # generator
self.AM = None # adversarial model
self.DM = None # discriminator model
# (W−F+2P)/S+1
def discriminator(self):
if self.D:
return self.D
self.D = Sequential()
depth = 32
dropout = 0.4
# In: ?, depth = 1
# Out: ?, depth=32
input_shape = (self.img_rows, self.img_cols, self.channel)
self.D.add(Conv2D(depth*1, 5, strides=2, input_shape=input_shape,\
padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
# Out: depth=64
self.D.add(Conv2D(depth*2, 5, strides=2, padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
# Out: depth=88
self.D.add(Conv2D(depth*4, 5, strides=2, padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
# Out: depth=128
self.D.add(Conv2D(depth*8, 5, strides=1, padding='same'))
self.D.add(LeakyReLU(alpha=0.2))
self.D.add(Dropout(dropout))
# Out: 1-dim probability
self.D.add(Flatten())
self.D.add(Dense(1))
self.D.add(Activation('sigmoid'))
self.D.summary()
return self.D
def generator(self):
if self.G:
return self.G
self.G = Sequential()
dropout = 0.4
# TODO len(vector of SNPs)
depth = 24
dim = 64
# In: ?
# Out: dim x dim x depth
self.G.add(Dense(dim*dim*depth, input_dim=400))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(Reshape((dim, dim, depth)))
self.G.add(Dropout(dropout))
# In: dim x dim x depth
# Out: 2*dim x 2*dim x depth/2
self.G.add(UpSampling2D())
self.G.add(Conv2DTranspose(int(depth/2), 5, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(UpSampling2D())
self.G.add(Conv2DTranspose(int(depth/4), 5, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
self.G.add(Conv2DTranspose(int(depth/8), 5, padding='same'))
self.G.add(BatchNormalization(momentum=0.9))
self.G.add(Activation('relu'))
# Out: 256 x 256 x 3 RGB image [0.0,1.0] per pix
self.G.add(Conv2DTranspose(int(depth/8), 5, padding='same'))
self.G.add(Activation('sigmoid'))
self.G.summary()
return self.G
def discriminator_model(self):
"""builds the discriminator model with dedicated optmizer and loss function"""
if self.DM:
return self.DM
# optimizable parameters (learning rate and decay)
optimizer = RMSprop(lr=0.0004, decay=6e-8)
self.DM = Sequential()
self.DM.add(self.discriminator())
self.DM.compile(loss='binary_crossentropy', optimizer=optimizer,\
metrics=['accuracy'])
return self.DM
def adversarial_model(self):
if self.AM:
return self.AM
# optimizable parameters (learning rate and decay)
optimizer = RMSprop(lr=0.0002, decay=3e-8)
self.AM = Sequential()
self.AM.add(self.generator())
self.AM.add(self.discriminator())
self.AM.compile(loss='binary_crossentropy', optimizer=optimizer,\
metrics=['accuracy'])
return self.AM
class Artsy_DCGAN(object):
def __init__(self, img_dir):
self.img_rows = 256
self.img_cols = 256
self.channel = 3
# we set the batch size to half of the actual one,
# so that the final batch (real images + noise generated becomes 128)
self.batch_size = 64
# DATA INPUT: we generate 256x256 images
train_datagen = ImageDataGenerator(
rescale=1/255,
zoom_range=0.2,
fill_mode='nearest'
)
train_generator = train_datagen.flow_from_directory(
img_dir,
classes=['landscape'],
target_size=(256, 256),
batch_size=self.batch_size,
class_mode=None,
color_mode="rgb"
)
self.x_train = train_generator
# self.x_train = self.x_train.reshape(-1, self.img_rows,\
# self.img_cols, 1).astype(np.float32)
self.DCGAN = DCGAN()
self.discriminator = self.DCGAN.discriminator_model()
self.adversarial = self.DCGAN.adversarial_model()
self.generator = self.DCGAN.generator()
def train(self, train_steps=2000, save_interval=0):
noise_input = None
if save_interval>0:
# noise should have the same size of our data!
noise_input = np.random.binomial(1, 0.5, size=[16, 400])
# for each batch
for (i, images_batch) in enumerate(self.x_train):
# this might need ad additional channel
images_train = images_batch
noise = np.random.binomial(1, 0.5, size=[images_train.shape[0], 400])
images_fake = self.generator.predict(noise)
x = np.concatenate((images_train, images_fake))
y = np.ones([2*images_train.shape[0], 1])
y[images_train.shape[0]:, :] = 0
# we train the discriminator first (teaching the police how to do its job)
d_loss = self.discriminator.train_on_batch(x, y)
y = np.ones([self.batch_size, 1])
noise = np.random.binomial(1, 0.4, size=[self.batch_size, 400])
# then we let the police teach the generator how to create good images
a_loss = self.adversarial.train_on_batch(noise, y)
log_mesg = "%d: [D loss: %f, acc: %f]" % (i, d_loss[0], d_loss[1])
log_mesg = "%s [A loss: %f, acc: %f]" % (log_mesg, a_loss[0], a_loss[1])
print(log_mesg)
if save_interval>0:
if (i+1)%save_interval==0:
self.plot_images(save2file=True, samples=noise_input.shape[0],\
noise=noise_input, step=(i+1))
def plot_images(self, save2file=False, fake=True, samples=16, noise=None, step=0):
filename = 'artsy.png'
if fake:
if noise is None:
noise = np.random.binomial(1, 0.5, size=[samples, 400])
else:
filename = "artsy_%d.png" % step
images = self.generator.predict(noise)
else:
# TODO fix this, train_generator has no shape attribute
i = np.random.randint(0, self.x_train.shape[0], samples)
images = self.x_train[i, :, :, :]
plt.figure(figsize=(10,10))
for i in range(images.shape[0]):
plt.subplot(4, 4, i+1)
image = images[i, :, :, :]
image = np.reshape(image, [self.img_rows, self.img_cols, self.channel])
plt.imshow(image)
plt.axis('off')
plt.tight_layout()
if save2file:
plt.savefig(filename)
plt.close('all')
else:
plt.show()
def extract_chromosome_information(path):
"""Extract the chromosome information from a id_XXXXXXXXX.simple_format.zip folder:
1. The chromosome files are extracted from the zip folder. (Chromosomes X and Y are disregarded)
2. The input information for the network is extracted for each chromosome and appended to the networkinput file:
for groups of 25 subsequent SNP positions in a range of 10,000 SNPs in total (outputting 400 values per chromosome),
it is determined if one or more SNPs are heterozygous (output a line with 1)
or if all 25 SNP positions are homozygous (output a line with 0).
3. The extracted files are deleted again.
4. The networkinput file is opened as a numpy array and restructured in 22 rows of 400 binary values.
input:
path : the path to the folder in which the id_XXXXXXXXX.simple_format.zip file can be found, e.g. 'id_XXXXXXXXX'
output:
chromosomes : a numpy array of shape (22, 400), one row per chromosome containing the 400 extracted heterozygosity values
"""
# Generate the networkinput file if it's not created yet
if len(glob.glob("%s/*networkinput.txt" % path)) == 0:
print('Extracting chromosomes from folder: ', path)
subprocess.call("""find %s -name "*.simple_format.zip" | while read filename; do unzip -o -d "`dirname "$filename"`" "$filename" "*chr[0-9]*" ; done; """ % path, shell=True)
subprocess.call("""find %s -type f -name "*_chr*.simple_format.txt" | sort -V | while read chr_filename; do head -n 40000 $chr_filename | awk ' {s += (substr($4,1,1) != substr($4,2,2))} NR>=10000 && NR<20000 && NR%%25==0 {print s!=0;s=0}' >> "${chr_filename%%_chr*.*.*}_networkinput.txt" ; done;"""% path, shell=True)
subprocess.call("""rm %s/*.simple_format.txt"""% path, shell=True)
input_filename = glob.glob("%s/*_networkinput.txt" % path)[0]
chromosomes = np.genfromtxt(input_filename)
chromosomes = np.reshape(chromosomes, (22, 400), order='C')
return chromosomes
def plot_genomes(chromosomes, model, filename, height=256, width=256):
"""
Helper function transforming the set of chromosomes into a modular karyospectrum
chromosomes : numpy array [22, 400]
model : path to file of the saved keras model
filename : str name of the output image
height : int
width : int
"""
generator = load_model(model)
images = generator.predict(chromosomes)
plt.figure(figsize=(12,8))
for i in range(images.shape[0]):
plt.subplot(4, 6, i+1)
image = images[i, :, :, :]
image = np.reshape(image, [height, width, 3])
plt.imshow(image)
plt.axis('off')
plt.tight_layout()
plt.savefig(filename)
plt.close('all')
if __name__ == '__main__':
# test run
artsy_dcgan = Artsy_DCGAN(img_dir="/home/ubuntu/art/wikiart")
timer = ElapsedTimer()
artsy_dcgan.train(train_steps=2000, save_interval=10)
timer.elapsed_time()
artsy_dcgan.plot_images(fake=True)
# artsy_dcgan.plot_images(fake=False, save2file=True)
# To loop over all folders with genome information and plot their content with our trained model:
# foldernames = glob.glob("../data/id_*")
# for folder in foldernames:
# chromosomes = extract_chromosome_information(folder)
#plot_genomes(chromosomes, ....)