-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_utility.py
774 lines (685 loc) · 26.6 KB
/
plot_utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import matplotlib.patches as mpatches
import datetime
import seaborn as sns
sns.set()
import glob
import os
from scipy import stats
from scipy.stats import wilcoxon as cox
dblue = (47, 122, 154)
lblue = (83, 201, 250)
#Clinical plot
def plot_clin_data(clin_df, metric, i, ax, palette):
#Scatter plot:
sns.scatterplot(data = clin_df, x = "w_avg", y = metric, ax = ax[i],
hue = "pers_id", palette = palette, legend = None)
def plot_hc_data(hc_df, metric, i , ax, palette, linecol):
#Scatterplot
sns.scatterplot(data = hc_df, x = "w_avg", y = metric, ax = ax[i],
color = "gray", alpha = 0.6)
#Line plot
sns.regplot(data = hc_df, x = "w_avg", y = metric, ax = ax[i],
fit_reg = True, ci = False,
line_kws={"color": linecol},
scatter_kws={'alpha':0.0})
def clinical_cor_plot(clin_df, hc_df, img_type, palette, linecolor, ylabels, titlelabels, title = None, main_title = None):
#Check colormaps
#Change Maker color to floats
for i, col in enumerate(palette):
if any(val>1 for val in col):
palette[i] = tuple(val/255 for val in col)
#if any(val>1 for val in markercolor):
#markercolor = tuple(val/255 for val in markercolor)
#Change Line color to floats
if any(val>1 for val in linecolor):
linecolor = tuple(val/255 for val in linecolor)
#Subset Data
rclin_df = clin_df.loc[clin_df["img_type"] == img_type].copy()
rhc_df = hc_df.loc[hc_df["img_type"] == img_type].copy()
fig, ax = plt.subplots(1, 3 ,figsize = (16,4))
for i, metric in enumerate(["coent", "aes", "tg"]):
plot_hc_data(rhc_df, metric, i, ax, palette, linecolor)
plot_clin_data(rclin_df, metric, i, ax, palette)
ax[i].set_xlabel("Observer Score (arb'U)")
ax[i].set_ylabel(ylabels[metric])
ax[i].set_title(titlelabels[metric])
#Legend Settings
legend_elements = [ Line2D([0], [0], color=linecolor, lw=4, label='Fitted Line'),
Line2D([0], [0], marker='o', color='gray', label='Healthy Control Data',lw=0),
Line2D([0], [0], marker='o', color=palette[0], label='MoCo_001',lw=0),
Line2D([0], [0], marker='o', color=palette[1], label='MoCo_002',lw=0),
Line2D([0], [0], marker='o', color=palette[2], label='MoCo_003',lw=0),]
#Add Legend
ax[1].legend(handles = legend_elements,
loc='upper center', bbox_to_anchor=(0.5, -0.3),
fancybox=True, shadow=True, ncol=len(legend_elements))
#Super title
if title is None:
plt.suptitle("Clinical Metric Evaluation for " + img_type, y = 1.1, fontsize = 15)
else: plt.suptitle(title, y = 1.1, fontsize = 15)
return fig
#HC CORR PLOT
def string_pval(pval):
"""
Given a pvalue format a
string with relavent info
"""
if pval <=0.001:
spval = str(pval)+"**"
elif pval <=0.05:
spval = str(pval)+"*"
elif np.round(pval,4) == 0.0:
return "<0.0006"
else: spval = str(pval)
if np.round(pval,4) == 0.0:
return "<0.0006"
return spval
def correlation_subplot(df, metrics, img_seq,
nrow = 1, ncol = 3, figure_size = (16,4),
title_names = None, ylabel_names = None,
linecolor = (83, 201, 250),
markerpalette = [],
alpha = 0.8,
fitreg = True, confint = False,
title = None, title_size = 15, subtitle_size=10,
main_title = None):
"""
Parameters
----------
df : pandas.DataFrame
DataFrame containing relevant data
such as the values to plot and identifier
variables, eg image type or personal id
metrics : iterable
list or array type containing strings of the
metrics to plot
img_seq : str
Image sequence to plot x,y data from
e.g. T1_MPR_
nrow : int
number of rows in the figure
ncol : int
number of columns in the figure
figure_size : tuple
size of the figure
title_names : dictionary
dictionary with metrics as keys
and appropriate title as values
ylabel_names : dictionary
dictionary with metrics as keys
and appropriate ylabels as values
linecolor : tuple
rgb color tuple for fitted line
markerpalette : list
list of rgb color tuples for scatter markers
alpha : float
opacity alpha, range [0,1]
fitreg : bool
Whether or not to fit a linear line to data
confint : bool
Whether or not to add confidence interval
to fitted line
title : str
Super-title for the figure
title_size : float
Fontsize of the super-title
subtitle_size : float
size of the titles for the subplots
Returns
--------
fig : <class 'matplotlib.figure.Figure'>
Scatterplot Figure for each metric
"""
#Create figure
fig, ax = plt.subplots(nrow, ncol, figsize = figure_size,
sharey = False, sharex = False)
#Check colormaps
#Change Maker color to floats
for i, col in enumerate(markerpalette):
if any(val>1 for val in col):
markerpalette[i] = tuple(val/255 for val in col)
#if any(val>1 for val in markercolor):
#markercolor = tuple(val/255 for val in markercolor)
#Change Line color to floats
if any(val>1 for val in linecolor):
linecolor = tuple(val/255 for val in linecolor)
#Set Palette
#Subset for relevant dataframe
rel_df = df.loc[df["img_type"] == img_seq]
rel_df["col"] = rel_df["nod"]+2*rel_df["shake"]
#Legend Settings
legend_elements = [ Line2D([0], [0], color=linecolor, lw=4, label='Fitted Line'),
Line2D([0], [0], marker='o', color='k', label='MoCo off',lw=0),
Line2D([0], [0], marker='s', color='k', label='MoCo on',lw=0),
Line2D([0], [0], marker='o', color=markerpalette[0], label='Still',lw=0),
Line2D([0], [0], marker='o', color=markerpalette[1], label='Nod',lw=0),
Line2D([0], [0], marker='o', color=markerpalette[2], label='Shake',lw=0),]
#Remove a color and legend point
#if the sequence is not MPRAGE
if "mpr" not in img_seq.lower():
legend_elements = legend_elements[:-1]
markerpalette = markerpalette[:-1]
#For each metric create a correlation plot
for i, metric in enumerate(metrics):
#Spearmann correlation
spearmann_corr, pval = np.round(stats.spearmanr(rel_df["w_avg"],rel_df[metric]),4)
#Add significance stars
#to pvalue
#spval = string_pval(pval)
spval = is_signf(pval)
if spval == "NS":
spval = ""
#annotate spearmann corr
ax[i].annotate("Spearman Correlation: "+str(spearmann_corr)+spval,
xy = (0.2,-0.3), xycoords = "axes fraction")
#Scatterplot
sns.scatterplot(data = rel_df, x = "w_avg", y = metric, ax = ax[i],
style = "moco",
markers = ["o", "s"],
style_order = [0,1],
hue = "col",
hue_order = [i for i in range(len(markerpalette))],
palette = markerpalette,
alpha = alpha, legend = None)
#Line plot
sns.regplot(data = rel_df, x = "w_avg", y = metric, ax = ax[i], fit_reg = fitreg,
line_kws={"color": linecolor}, ci = confint,
scatter_kws={'alpha':0.0},)
#Change title and labels
ax[i].set_title(title_names[metric], fontsize = title_size)
ax[i].set_ylabel(ylabel_names[metric]+" (arb'U)", fontsize = title_size)
ax[i].set_xlabel("Observer Scores (arb'U)", fontsize = title_size)
#Add Legend
ax[1].legend(handles = legend_elements,
loc='upper center', bbox_to_anchor=(0.5, -0.3),
fancybox=True, shadow=True, ncol=len(legend_elements))
#Super title
if title is None:
plt.suptitle("Metric Evaluation for " + img_seq[:-1], y = 1.1, fontsize = title_size)
else: plt.suptitle(title, y = 1.1, fontsize = title_size)
if main_title is not None:
plt.suptitle("Clinical Metric Evaluation for " + main_title[img_seq[:-1]], y = 1.1, fontsize = 15)
#Return the figure
return fig
#HC BOXPLOT
def pivot_df(df,nod):
rel_df = df.copy()
rel_df = rel_df.loc[rel_df["nod"] == nod]
rel_df = rel_df.drop(["nod","moco"], axis = 1)
rel_df = rel_df.pivot("pers_id", "x")
return rel_df
def add_lines(df, ax):
#For nodding:
rel_df = pivot_df(df, nod= 1)
npdf = np.array(rel_df.reset_index(drop = True))
for row in npdf:
sns.lineplot(x = [2,3], y = row, ax = ax, color = "k",alpha = 0.3)
#For still:
rel_df = pivot_df(df, nod= 0)
npdf = np.array(rel_df.reset_index(drop = True))
for row in npdf:
sns.lineplot(x = [0,1], y = row, ax = ax, color = "k",alpha = 0.3)
def change_box_colors(ax, cols):
for axis in ax:
#whisker color
for i in range(6):
axis.lines[i].set_color(cols[0])
axis.lines[i+5].set_color(cols[1])
axis.lines[i+11].set_color(cols[0])
axis.lines[i+17].set_color(cols[1])
#Box color
for i in range(len(axis.get_xticks())):
# Select which box you want to change
mybox = axis.artists[i]
# Change the appearance of that box
mybox.set_facecolor("none")
mybox.set_edgecolor(cols[i%2])
mybox = axis.artists[i+2]
# Change the appearance of that box
mybox.set_facecolor("none")
mybox.set_edgecolor(cols[i%2])
def wilcox(metric_df):
#pvalue for still
npdf = np.array(pivot_df(metric_df, 0).reset_index(drop = True))
npdf[:,0]
stat, stillpval = cox(npdf[:,0], npdf[:,1], alternative = "two-sided")
#pvalue for nodding
npdf = np.array(pivot_df(metric_df, 1).reset_index(drop = True))
npdf[:,0]
stat, nodpval = cox(npdf[:,0], npdf[:,1], alternative = "two-sided")
return stillpval, nodpval
def is_signf(pval):
if pval <=0.001:
return "**"
elif pval<=0.05:
return "*"
else: return "NS"
def subset_wilcox_df(df, img_seq, metric):
rel_df = df.copy()
rel_df = rel_df.loc[rel_df["img_type"] == img_seq]
rel_df = rel_df.loc[rel_df["metric"] == metric]
rel_df = rel_df.loc[rel_df["RR"] == 0]
print(rel_df)
nod_pvalue = rel_df.loc[rel_df["motion"] == "nod", "pvalue_cor"].reset_index(drop = True)[0]
still_pvalue = rel_df.loc[rel_df["motion"] == "still", "pvalue_cor"].reset_index(drop = True)[0]
print(nod_pvalue, still_pvalue)
return still_pvalue , nod_pvalue
def box_subplot(df, wilcox_df, metrics, img_seq, linewidth = 3, box_cols = [], main_title = None):
#Colors to use
cols = []
#Check colormaps
for col in box_cols:
#Change Maker color to floats
if any(val>1 for val in col):
#Change to float values
col = tuple(val/255 for val in col)
#Append to cols list
cols.append(col)
fig, ax = plt.subplots(3,1, figsize = (8,16))
#Subset dataframe
#Without shake and without Reacquisition
rel_df = df.copy()
rel_df = rel_df.loc[rel_df["img_type"] == img_seq]
rel_df = rel_df.loc[rel_df["RR"] == 0]
rel_df = rel_df.loc[rel_df["shake"] == 0]
print("MAKING PLOT")
print("---------------------------------------------------")
print("---------------------------------------------------")
print("---------------------------------------------------")
print("---------------------------------------------------")
for i, metric in enumerate(metrics):
#make boxplot for each metric
metric_df = rel_df[["pers_id", "moco", "nod"]+[metric]].copy()
metric_df["x"] = metric_df["moco"]+2*metric_df["nod"]
#create boxplot
sns.boxplot(data = metric_df, x = "x", y = metric, ax = ax[i], linewidth = linewidth)
#Print Adding lines
add_lines(metric_df, ax[i])
print()
print("---------------------------------------------------")
print(i)
print(metric)
#Retrieve wilcoxon rank pavlues
still_pvalue, nod_pvalue = subset_wilcox_df(wilcox_df, img_seq, metric)
print(still_pvalue, nod_pvalue)
#Convert to string format
still_pvalue, nod_pvalue = is_signf(still_pvalue), is_signf(nod_pvalue)
print(still_pvalue, nod_pvalue)
print("---------------------------------------------------")
print()
#Add stars and significance level
#still
y, h, col = metric_df[metric].max() + 0.1, 0.05*(metric_df[metric].max()-metric_df[metric].min()), 'k'
x1,x2 = 0,1
ax[i].plot([x1, x1, x2, x2], [y, y+h, y+h, y], lw=1.5, c=col)
ax[i].text((x1+x2)*.5, y+h, still_pvalue, ha='center', va='bottom', color=col, fontsize = 15)
#nodding
y, h, col = metric_df[metric].max() + 0.1, 0.05*(metric_df[metric].max()-metric_df[metric].min()), 'k'
x1,x2 = 0+2,1+2
ax[i].plot([x1, x1, x2, x2], [y, y+h, y+h, y], lw=1.5, c=col)
ax[i].text((x1+x2)*.5, y+h, nod_pvalue, ha='center', va='bottom', color=col, fontsize = 15)
#Set xticks
for i in range(3):
ax[i].set_xticks([0.5, 2.5])
ax[i].set_xticklabels(["Still", "Nod"],fontsize=16)
ax[i].set_xlabel("")
#Titles
ax[0].set_title("Co-occurence Entropy", fontsize = 16)
ax[1].set_title("Average Edge Strength", fontsize = 16)
ax[2].set_title("TennenGrad", fontsize = 16)
#Labels
ax[0].set_ylabel("CoEnt(arb'U)", fontsize = 16)
ax[1].set_ylabel("AES(arb'U)", fontsize = 16)
ax[2].set_ylabel("TG(arb'U)", fontsize = 16)
#Change colors of the boxes
change_box_colors(ax, cols)
#Legend Settings
legend_elements = [Line2D([0], [0], marker='s', color=cols[0], label='MoCo off',lw=0),
Line2D([0], [0], marker='s', color=cols[1], label='MoCo on' ,lw=0),]
#Add legend
ax[2].legend(handles = legend_elements,
loc='upper center',bbox_to_anchor=(0.5, -0.1),
fancybox=True, shadow=True, ncol=len(legend_elements))
#Add super title
plt.suptitle("Metric boxplot " + img_seq[:-1], fontsize = 24, y = 0.95)
if main_title is not None:
try:
plt.suptitle("Metric boxplot " + main_title[img_seq[:-1]], fontsize = 24, y = 0.95)
except:
print("OK hello")
return fig
def correlation_plot(df,img_seq, title,
x, y,
save_dir ="", file_name = "",
x_label = " ", y_label = " ",
x_ticks = True, y_ticks = True,
marker_color = (47, 122, 154),
line_color = (83, 201, 250),
alpha = 0.7, fit_line = True, conf_int = True, legend_label = ["Fitted Line", "Data"], ax = None):
'''
Parameters
----------
df : pandas.DataFrame
DataFrame containing relevant data
such as the values to plot and identifier
variables, eg image type or personal id
img_seq : str
Image sequence to plot x,y data from
e.g. T1_MPR_
title : str
title of the plot
save_dir : str
Where to save the figure
file_name : str
What to call the file
x : str
column string for the x-axis data
y : str
column string for the y-axis data
x_label : str
x-axis label
y_label : str
y-axis label
x_ticks : bool or array
True/False uses default ticks values
or turns off ticks.
Array of type [locations, values]
to use custom ticks
y_ticks : bool or array
True/False uses default ticks values
or turns off ticks.
Array of type [locations, values]
to use custom ticks
marker_color : tuple
rgb color tuple, can be in [0,1] or [0,255]
line_color : tuple
rgb color tuple, can be in [0,1] or [0,255]
alpha : float
alpha opacity for plot markers
fit_line : bool
Whether or not to fit regression line.
conf_int : bool
Whether or not to add confidence interval to reg line.
Returns
-------
fig : matplotlib.figure.Figure
plotted figure.
'''
#Check if the sequence is valid
if not img_seq in df["img_type"].unique():
print("ERROR")
print("Invalid sequence")
print("Valid sequences:")
print(df["img_type"].unique())
return None
#Relevant pd.DataFrame
rel_df = df.loc[df["img_type"] == img_seq]
#Check colormaps
#Change Maker color to floats
if any(val>1 for val in marker_color):
marker_color = tuple(val/255 for val in marker_color)
#Change Line color to floats
if any(val>1 for val in line_color):
line_color = tuple(val/255 for val in line_color)
#Assign x-y values
try:
x = rel_df[x]
y = rel_df[y]
except:
print("ERROR")
print("KeyError")
print("Possibles keys:")
print(list(df))
return None
#Create figure
fig = plt.figure()
if ax is not None:
sns.regplot(x,y, fit_reg = fit_line, ci = conf_int,
scatter_kws={'alpha':alpha, "color" : marker_color},
line_kws={"color": line_color}, ax = ax)
else:
#Scatter plot (x,y)
sns.regplot(x,y, fit_reg = fit_line, ci = conf_int,
scatter_kws={'alpha':alpha, "color" : marker_color},
line_kws={"color": line_color})
#Add title and labels
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title(title)
plt.legend(loc = "upper right", labels = legend_label)
#Check ticks, and change acordingly
#If ticks values are provided they are used
#otherwise default ticks are used
#x-ticks
#Check if list or array is passed
if isinstance(x_ticks,(list,np.ndarray)):
#Replace x-ticks with the provided ticks
plt.xticks(x_ticks[0], x_ticks[1])
#If bool "false" is given to ticks remove ticks
elif not x_ticks:
plt.xticks([])
#y-ticks
#Check if list or array is passed
if isinstance(y_ticks,(list,np.ndarray)):
#Replace y-ticks with the provided ticks
plt.xticks(y_ticks[0], y_ticks[1])
#If bool "false" is given to ticks remove ticks
elif not y_ticks:
plt.xticks([])
#Spearman correlation
spearmann_corr, pval = np.round(stats.spearmanr(x,y),4)
#Add significance stars
if pval <=0.05:
spval = str(pval)+"*"
elif pval <=0.001:
spval = str(pval)+"**"
else: spval = str(pval)
#Annotate correlation
x_max = np.max( fig.axes[0].get_xlim() )
x_min = np.min( fig.axes[0].get_xlim() )
y_max = np.max( fig.axes[0].get_ylim() )
y_min = np.min( fig.axes[0].get_ylim() )
#Fraction to put the annotation
#if both zero it is a bottom left,
#if both 1 top right
#Values in range [0,1]
x_frac = 0
y_frac = 0.9
fig.axes[0].annotate("Spearman Correlation: "+str(spearmann_corr)+"\n"+
"p-value: "+spval, xy = (x_frac,y_frac), xycoords = "axes fraction")
#Change xlimits to avoid clipping of points
plt.xlim(left = np.min(fig.axes[0].get_xlim())-0.1, right = x_max+0.1 )
#Save the figure:
if len(save_dir)>0:
if not os.path.exists(save_dir):
print("Folder did not exist")
print("Creating folder")
os.makedirs(save_dir)
#Current date, eg oct_18
dat = datetime.datetime.now()
dat = dat.strftime("%b")+"_"+dat.strftime("%d")
#Save figure to the savedir
fig.savefig(save_dir + file_name+dat+".png")
#Return the figure
return fig
def starbox_plot(df, img_seq, id_var, split_var, metric, plot_title, nod,
x_label = "", y_label = "", x_ticks = [],
save_dir = None, file_name = None, wilcox_file = None, wilcox_df = None, RR = 0, shake = 0,
id_color = "k", id_alpha = 0.7, linewidth = 3, box_cols = [dblue, lblue], legend = False):
'''
Parameters
----------
df : pandas.DataFrame
DataFrame containing relevant data
such as the values to plot and identifier
variables, eg image type or personal id
img_seq : str
Image sequence to plot x,y data from
e.g. T1_MPR_
id_var : str
Column name for identifying which the observations
belong to
split_var : str
Variable to split by. The different values
of split_var corresponds to each box in the boxplot.
eg if split_var has 2 levels, 2 boxes are produced
metric : str
which metric to use/plot along y-axis, eg "coent" or "aes"
plot_title : str
title of the plot
nod : bool
0 is for still images, 1 is for nodding images
x_label : str
x-axis label
y_label : str
y-axis label
x_ticks : bool or array
True/False uses default ticks values
or turns off ticks.
Array of type [locations, values]
to use custom ticks
save_dir : str
Where to save the figure
file_name : str
What to call the file
wilcox_file : str
Filepath for a csv file containing wilcoxon rank
test statistics and pvalues for each metric,
nodding/still and for the metric used.
wilcox_file or wilcox_df should be specified
wilcox_df : pd.DataFrame
DataFrame containing wilcoxon rank
test statistics and pvalues for each metric,
nodding/still and for the metric used.
wilcox_file or wilcox_df should be specified
RR : bool
Reacquisition
shake : bool
Shaking
id_color : str
Color for the connecting lines between two boxplots
Default is black
id_alpha : float
Alpha level opacity for the connecting lines
linewidth : float
Linewidth of the boxplot
box_cols : list
List containing rbg values to use to the plots.
Two values should be given
line_color : tuple
rgb color tuple, can be in [0,1] or [0,255]
legend : bool
If true adds a legend to the plot
Returns
-------
fig : matplotlib.figure.Figure
plotted figure.
'''
#Input verification
if wilcox_df is None and wilcox_file is None:
print("Error, both wilcox file path and dataframe is None")
print("Need a wilcox dataframe or file")
if (save_dir is None) ^ (file_name is None):
print("Error, save_dir and save_file should either both be None or specified")
cols = []
#Check colormaps
for col in box_cols:
#Change Maker color to floats
if any(val>1 for val in col):
#Change to float values
col = tuple(val/255 for val in col)
#Append to cols list
cols.append(col)
#Load data
if wilcox_file is not None:
wilcox_df = pd.read_csv(wilcox_file)
#Subset to relevant data
rel_df = df.copy()
rel_df["img_type"] = rel_df["img_type"]#.str[:-1]
rel_df = rel_df.loc[rel_df["nod"] == nod]
rel_df = rel_df.loc[rel_df["img_type"] == img_seq]
rel_df = rel_df.loc[rel_df["shake"] == shake]
rel_df = rel_df.loc[rel_df["RR"] == RR]
"""
#Drop redundant columns
cox_df = rel_df.copy()
cox_df = cox_df.drop(["nod", "still", "RR", "shake", "img_type"], axis = 1)
#Subset for only relevant columnds
cox_df = cox_df[["pers_id", "moco", metric]]
cox_df = cox_df.drop_duplicates()
cox_df = cox_df.set_index(['pers_id', 'moco'])[metric].unstack().reset_index()
#Calculate the Wilcoxon test statistic and pvalue
stat, pval = cox( x = cox_df[0] , y = cox_df[1] )
print( cox( x = cox_df[0] , y = cox_df[1] ))
"""
#Drop redundant columns
rel_df = rel_df[[id_var, split_var, metric]]
#Subset to relevant wilcox data
rel_cox = wilcox_df.loc[wilcox_df["metric"] == metric]
rel_cox = rel_cox.loc[rel_cox["img_type"] == img_seq]
rel_cox = rel_cox.loc[rel_cox["nod"] == nod]
#Check if the pvalue is significant
signf = False
if rel_cox.shape[0]>0:
pval = round(list(rel_cox["pval"])[0],5)
#Add significance stars
if pval <=0.001:
signf = True
str_pval = str(pval)+"**"
elif pval <=0.05:
signf = True
str_pval = str(pval)+"*"
else: str_pval = str(pval)
#Create the boxplot:
fig = plt.figure()
ax = sns.boxplot(data = rel_df, x = split_var, y = metric, linewidth = linewidth)
#Change colors of boxes
for i in range(len(ax.get_xticks())):
# Select which box you want to change
mybox = ax.artists[i]
# Change the appearance of that box
mybox.set_facecolor("none")
mybox.set_edgecolor(cols[i%2])
#Change whiskers color
for i in range(6):
ax.lines[i].set_color(cols[0])
ax.lines[i+5].set_color(cols[1])
#if significant add stars and stripes
if signf:
#Add stars and significance level
y, h, col = rel_df[metric].max() + 0.1, 0.1, 'k'
x1,x2 = 0,1
plt.plot([x1, x1, x2, x2], [y, y+h, y+h, y], lw=1.5, c=col)
plt.text((x1+x2)*.5, y+h, str_pval, ha='center', va='bottom', color=col)
#Add idlines
plot_array = np.asarray( rel_df.pivot(id_var, columns =split_var) )
for val in plot_array:
plt.plot(val, c = id_color, alpha = id_alpha)
if nod == 1:
nod_title = "nodding"
else: nod_title = "still"
#Set axis labels
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title(plot_title +" "+img_seq+" "+metric+" "+nod_title )
ax.set_xticklabels(x_ticks)
moco_off = mpatches.Patch(color=cols[0], label="MoCo off")
moco_on = mpatches.Patch(color=cols[1], label="MoCo on")
if legend:
plt.legend(handles=[moco_on,moco_off])
#Save figure
if save_dir is not None:
if not os.path.exists(save_dir):
print("Folder did not exist")
print("Creating folder")
os.makedirs(save_dir)
#Current date, eg oct_18
dat = datetime.datetime.now()
dat = dat.strftime("%b")+"_"+dat.strftime("%d")
#Save figure to the savedir
fig.savefig(save_dir + file_name+dat+".png")
return fig