-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhannah_recon_clone.py
396 lines (292 loc) · 14.7 KB
/
hannah_recon_clone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import glob
import subprocess
import numpy as np
import nibabel as nib
def transformMRI(sub, niftiDir, outDir):
'''
Calculates the registration transform: using FreeSurfer functions
bbregister for MPRAGE and still MOCO_OFF of remaining scans and
robust register for remaining scans.
Parameters
----------
sub : str
subject ID.
niftiDir : str
path to Nifti directory.
outDir : str
path to output directory.
Returns
-------
int
returns 0, when completed.
'''
# use bbregister for T1 MPRAGE scans and MOCO_OFF_STILL_ scans
# corresponding to remaining sequences (in order to later apply to
# brainmask):
regDir = outDir + 'regs/'
if not os.path.exists(regDir):
print('New regDir created')
os.makedirs(regDir)
files = glob.glob(niftiDir+"*T1_MPR_*.nii")
for i in range(0, len(files)):
movImg = niftiDir + os.path.basename(files[i])
regname = regDir + os.path.basename(files[i]) + '.lta'
subprocess.run('bbregister --s ' + sub + ' --mov '+ movImg + ' --reg ' + regname + ' --t1 --init-best-header', shell=True)
print(i, ' done')
print("+------------------------------------------------------------------+")
print("| |")
print("| bbreg for T1_MPR_ done |")
print("| |")
print("+------------------------------------------------------------------+")
for tag in ['T2_TSE_', 'T1_TIRM_', 'T2_FLAIR', 'T2STAR', 'EPI_SWI', 'ADC', 'TRACEW_B0', 'TRACEW_B1000']:
if len(glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii"))>0:
still_img = glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii")[0]
movImg = niftiDir + os.path.basename(still_img)
regname = regDir + os.path.basename(still_img) + '.lta'
if tag in ['T1_TIRM_']:
subprocess.run('bbregister --s ' + sub + ' --mov '+ movImg + ' --reg ' + regname + ' --t1 --init-best-header', shell=True)
else:
subprocess.run('bbregister --s ' + sub + ' --mov '+ movImg + ' --reg ' + regname + ' --t2 --init-best-header', shell=True)
print("+------------------------------------------------------------------+")
print("| |")
print("| bbregister for MOCO_OFF_STILL_ of remaining scans done |")
print("| |")
print("+------------------------------------------------------------------+")
# use robust register for the remaining sequences:
regDir = outDir + 'regs_robust/'
if not os.path.exists(regDir):
print('New regDir created')
os.makedirs(regDir)
for tag in ['T2_TSE_', 'T1_TIRM_', 'T2_FLAIR', 'T2STAR', 'EPI_SWI', 'ADC', 'TRACEW_B0', 'TRACEW_B1000']:
if len(glob.glob(niftiDir+"*"+tag+"*.nii"))>0:
files = glob.glob(niftiDir+"*"+tag+"*.nii")
targImg = glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii")[0]
for i in range(0, len(files)):
movImg = niftiDir + os.path.basename(files[i])
regname = regDir + os.path.basename(files[i]) + '.lta'
subprocess.run('mri_robust_register --mov '+ movImg + ' --dst ' + targImg + ' --lta ' + regname + ' --satit', shell=True)
print(i, ' done')
print('##################')
print('robust register for ', tag, ' done')
print('##################')
return 0
def applyTransformMRI(niftiDir, brainmask, outDir):
'''
Applies transforms (saved in outDir/regs or outDir/regs_robust) to the
scans as well as to the brainmasks
Parameters
----------
niftiDir : str
directory where nifti images are stored.
brainmask : str
directory where brainmask for reference image is stored.
outDir : str
directory where moved and masked images will be saved.
Returns
-------
int
returns 0, when completed.
'''
# binarize brainmask and transform T1_MPR:
# output: brainmask_bin.nii and *T1_MPR_*_moved.nii
regDir = outDir + 'regs/'
subDir, tail = os.path.split(brainmask)
name, ext = os.path.splitext(tail)
brainmask_bin_nii = outDir + 'brainmask_bin.nii'
T1 = subDir + '/T1.mgz'
# binarize brainmask:
subprocess.run('mri_binarize --i ' + brainmask + ' --o ' + brainmask_bin_nii + ' --match 0 --inv', shell=True)
files = glob.glob(niftiDir+"*T1_MPR_*.nii")
for i in range(0, len(files)):
vol = niftiDir+os.path.basename(files[i])
name2, ext2 = os.path.splitext(os.path.basename(files[i]))
vol_moved = outDir + name2 + '_moved' + ext2
regname = regDir + os.path.basename(files[i]) + '.lta'
# transform:
subprocess.run('mri_vol2vol --mov ' + vol + ' --targ ' + T1 + ' --o ' + vol_moved + ' --lta ' + regname, shell=True)
print(i, ' done')
print('##################')
print('Transform applied for T1_MPR_')
print('##################')
# transform brainmask into still/MoCo_off domain of remaining scans:
for tag in ['T2_TSE_', 'T1_TIRM_', 'T2_FLAIR', 'T2STAR', 'EPI_SWI', 'ADC', 'TRACEW_B0', 'TRACEW_B1000']:
if len(glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii"))>0:
still_img = glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii")[0]
bm_mov = outDir + 'bm_mov_'+os.path.basename(still_img)
T2 = niftiDir + os.path.basename(still_img)
regname = regDir + os.path.basename(still_img) + '.lta'
name2, ext2 = os.path.splitext(os.path.basename(still_img))
# transform:
subprocess.run('mri_vol2vol --mov ' + T2 + ' --targ ' + brainmask_bin_nii + ' --o ' + bm_mov + ' --lta ' + regname + ' --inv --nearest', shell=True)
print('##################')
print('Brainmask transformed for ', tag)
print('##################')
# transform remaining scans:
# output: *tag*_moved.nii
regDir = outDir + 'regs_robust/'
for tag in ['T2_TSE_', 'T1_TIRM_', 'T2_FLAIR', 'T2STAR', 'EPI_SWI', 'ADC', 'TRACEW_B0', 'TRACEW_B1000']:
if len(glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii"))>0:
targImg = glob.glob(niftiDir+"*MOCO_OFF_STILL_*"+tag+"*.nii")[0]
files = glob.glob(niftiDir+"*"+tag+"*.nii")
for i in range(0, len(files)):
vol = niftiDir+os.path.basename(files[i])
name2, ext2 = os.path.splitext(os.path.basename(files[i]))
vol_moved = outDir + name2 + '_moved' + ext2
regname = regDir + os.path.basename(files[i]) + '.lta'
# transform:
subprocess.run('mri_vol2vol --mov ' + vol + ' --targ ' + targImg + ' --o ' + vol_moved + ' --lta ' + regname, shell=True)
print(i, ' done')
return 0
def transformMRIRetro(sub, niftiDir, outDir, corr=True):
'''
Calculates the registration transform for retrospectively corrected data:
using FreeSurfer functions bbregister for MPRAGE and still MOCO_OFF scans
of remaining sequences and robust register for remaining scans.
Parameters
----------
sub : str
subject ID.
niftiDir : str
path to Nifti directory.
outDir : str
path to output directory.
corr : bool (optional)
if it is True, then regnames are adjusted to deal with the fact that
retrospectively reconstructed scans have a different filename after
bias field correction.
Returns
-------
int
returns 0, when completed.
'''
# bbregister for T1 MPRAGE and MOCO_OFF_STILL_ FLAIR scan:
regDir = outDir + 'regs_retro/'
if not os.path.exists(regDir):
print('New regDir created')
os.makedirs(regDir)
files = glob.glob(niftiDir+"*T1_MPR_*.nii")
for i in range(0, len(files)):
movImg = niftiDir + os.path.basename(files[i])
regname = regDir + os.path.basename(files[i]) + '.lta'
if corr == True:
regname = regDir + os.path.basename(files[i])[14:] + '.lta'
subprocess.run('bbregister --s ' + sub + ' --mov '+ movImg + ' --reg ' + regname + ' --t1 --init-best-header', shell=True)
print(i, ' done')
print('##################')
print('bbregister for T1_MPR_Retro done')
print('##################')
# robust register for all T2 FLAIR scans:
regDir = outDir + 'regs_robust_retro/'
if not os.path.exists(regDir):
print('New regDir created')
os.makedirs(regDir)
if len(glob.glob(niftiDir+"*T2_FLAIR*.nii"))>0:
files = glob.glob(niftiDir+"*T2_FLAIR*.nii")
targImg = glob.glob(niftiDir+"*MOCO_OFF_STILL_*T2_FLAIR*.nii")[0]
for i in range(0, len(files)):
movImg = niftiDir + os.path.basename(files[i])
regname = regDir + os.path.basename(files[i]) + '.lta'
if corr == True:
regname = regDir + os.path.basename(files[i])[14:] + '.lta'
subprocess.run('mri_robust_register --mov '+ movImg + ' --dst ' + targImg + ' --lta ' + regname + ' --iscale --satit', shell=True)
print(i, ' done')
print('##################')
print('robust register for T2_FLAIR_Retro done')
print('##################')
return 0
def applyTransformMRIRetro(niftiDir, brainmask, outDir, corr=True):
'''
Applies transforms for retrospectively corrected scans (saved in
outDir/regs or outDir/regs_robust) and transforms the brainmasks
Parameters
----------
niftiDir : str
directory where nifti images are stored.
brainmask : str
directory where brainmask for reference image is stored.
outDir : str
directory where moved and masked images will be saved.
corr : bool (optional)
if it is True, then regnames are adjusted to deal with the fact that
retrospectively reconstructed scans have a different filename after
bias field correction.
Returns
-------
int
returns 0, when completed.
'''
# binarize brainmask and transform T1_MPR
# --> output: brainmask_bin.nii and *T1_MPR_*_moved.nii
regDir = outDir + 'regs_retro/'
subDir, tail = os.path.split(brainmask)
name, ext = os.path.splitext(tail)
brainmask_bin_nii = outDir + name + '_bin.nii'
T1 = subDir + '/T1.mgz'
# binarize brainmask:
subprocess.run('mri_binarize --i ' + brainmask + ' --o ' + brainmask_bin_nii + ' --match 0 --inv', shell=True)
files = glob.glob(niftiDir+"*T1_MPR_*.nii")
for i in range(0, len(files)):
vol = niftiDir+os.path.basename(files[i])
name2, ext2 = os.path.splitext(os.path.basename(files[i]))
vol_moved = outDir + 'retro_scans/' + name2 + '_moved' + ext2
regname = regDir + os.path.basename(files[i]) + '.lta'
if corr == True:
regname = regDir + os.path.basename(files[i])[14:] + '.lta'
# transform:
subprocess.run('mri_vol2vol --mov ' + vol + ' --targ ' + T1 + ' --o ' + vol_moved + ' --lta ' + regname, shell=True)
print(i, ' done')
print('##################')
print('Transform applied for T1_MPR_')
print('##################')
# now move T2 FLAIR scans:
regDir = outDir + 'regs_robust_retro/'
if len(glob.glob(niftiDir+"*MOCO_OFF_STILL_*T2_FLAIR*.nii"))>0:
targImg = glob.glob(niftiDir+"*MOCO_OFF_STILL_*T2_FLAIR*.nii")[0]
files = glob.glob(niftiDir+"*T2_FLAIR*.nii")
for i in range(0, len(files)):
vol = niftiDir+os.path.basename(files[i])
name2, ext2 = os.path.splitext(os.path.basename(files[i]))
vol_moved = outDir + 'retro_scans/' + name2 + '_moved' + ext2
regname = regDir + os.path.basename(files[i]) + '.lta'
if corr == True:
regname = regDir + os.path.basename(files[i])[14:] + '.lta' #check that working
# transform:
subprocess.run('mri_vol2vol --mov ' + vol + ' --targ ' + targImg + ' --o ' + vol_moved + ' --lta ' + regname, shell=True)
print(i, ' done')
# use the brainmask transform calculated on data reconstructed by the
# scanner, but flip it in all directin so that it matches
# retrospectively reconstructed FLAIR scans):
if corr == False:
bm_file = glob.glob(outDir+'bm_mov_*TCLMOCO_OFF_STILL_T2_FLAIR*.nii')[0]
bm = nib.load(bm_file).get_fdata().astype(np.uint16)
bm_tr = bm[::-1,::-1,::-1]
np.save(outDir+'bm_mov_retro_TCLMOCO_OFF_STILL_T2_FLAIR', bm_tr)
print('##############')
print('Transform applied for T2 FLAIR')
print('##############')
return 0
def Run_Recon_All_Again(fails):
for f in fails:
subprocess.run('recon-all -s ' + f + ' -sd /mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ -all -parallel', shell=True) # -sd /data1/hannah/Old_Setup/Data_Recon_All/
return 0
def Run_Long_Stream(name):
# Run base recon all to create whithin-subject template:
# MoCo OFF scans
tp = '-tp '+name # MoCo OFF Still has different name
for mov in ['NOD_RR_', 'SHAKE_RR_']:
tp += ' -tp '+'X_OFF_'+ mov+name
for mov in ['STILL_', 'NOD_RR_', 'SHAKE_RR_']:
tp += ' -tp '+'X_ON_'+ mov+name
if os.path.exists('/mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/X_ON_STILL_Vol_10/Data_Recon_All/X_BASE_OFF_'+name)==False:
subprocess.run('recon-all -base X_BASE_'+name+' '+tp+' -sd /mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ -all -parallel', shell=True)
# Longitudinal runs:
if os.path.exists('/mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/'+name+'.long.X_BASE_OFF_'+name)==False:
subprocess.run('recon-all -long '+name+' X_BASE_'+name+' -sd /mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ -all -parallel', shell=True) # MoCo OFF Still has different name
for mov in ['NOD_RR_', 'SHAKE_RR_']:
if os.path.exists('/mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/X_OFF_'+mov+name+'.long.X_BASE_OFF_'+name)==False:
subprocess.run('recon-all -long X_OFF_'+mov+name+' X_BASE_'+name+' -sd /mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ -all -parallel', shell=True)
for mov in ['STILL_', 'NOD_RR_', 'SHAKE_RR_']:
if os.path.exists('/mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ON_'+mov+name+'.long.X_BASE_ON_'+name)==False:
subprocess.run('recon-all -long X_ON_'+mov+name+' X_BASE_'+name+' -sd /mnt/mocodata1/Data_Analysis/Data_Recon_All/Longitudinal/ -all -parallel', shell=True)
return 0