-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPyra_alignms.py
455 lines (377 loc) · 14.9 KB
/
Pyra_alignms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from pyralysis.io import DaskMS
# from pyralysis.reconstruction import Image
import astropy.units as u
from scipy import ndimage
import scipy as sp
import numpy as np
from pyralysis.units import lambdas_equivalencies
from pyralysis.transformers.weighting_schemes import Uniform, Robust
from pyralysis.transformers import Gridder, HermitianSymmetry, DirtyMapper
from pyralysis.io import FITS
from astropy.units import Quantity
import re
from iminuit import Minuit
from astropy.io import fits
import os
# import cmath
def cartesian2polar(outcoords, inputshape, origin, fieldscale=1.):
rindex, thetaindex = outcoords
x0, y0 = origin
theta = thetaindex * 2 * np.pi / (inputshape[0] - 1)
y = rindex * np.cos(theta) / fieldscale
x = rindex * np.sin(theta) / fieldscale
ix = -x + x0
iy = y + y0
return (iy, ix)
def polarexpand(im):
(ny, nx) = im.shape
im_polar = sp.ndimage.geometric_transform(im,
cartesian2polar,
order=1,
output_shape=(im.shape),
extra_keywords={
'inputshape':
im.shape,
'fieldscale':
1.,
'origin':
(((nx + 1) / 2) - 1,
((ny + 1) / 2) - 1)
})
return im_polar
def punch_vis(im, du, fileout, CRPIX1=1., CRPIX2=1.):
print("punching ", fileout)
nx, ny = im.shape
hdu = fits.PrimaryHDU()
hdu.data = im
hdr = hdu.header
CRPIX1 = (nx + 1.) / 2.
CRPIX2 = (ny + 1.) / 2.
hdr['CRPIX1'] = CRPIX1
hdr['CRVAL1'] = 0.
hdr['CDELT1'] = -du.value
hdr['CRPIX2'] = CRPIX2
hdr['CRVAL2'] = 0.
hdr['CDELT2'] = du.value
hdr['BUNIT'] = 'Jy'
hdu.header = hdr
hdu.writeto(fileout, overwrite=True)
def shiftvis(V_S, uus, vvs, alpha_R, delta_x, delta_y):
argphase = 2. * np.pi * (uus * (delta_x * np.pi / (180. * 3600.)) + vvs *
(delta_y * np.pi / (180. * 3600.)))
# eulerphase = np.cos(argphase)+1j*np.sin(argphase)
eulerphase = np.exp(1j * argphase)
V_L_m = alpha_R * V_S * eulerphase
return V_L_m
def chi2(V_S, V_L, w, uus, vvs, alpha_R, delta_x, delta_y):
V_L_m = shiftvis(V_S, uus, vvs, alpha_R, delta_x, delta_y)
diff = V_L - V_L_m
squarediff = (diff.real**2) + (diff.imag**2)
retval = np.sum(w * squarediff)
if np.isnan(retval):
print("chi2 is NaN")
retval = np.inf
return retval
def gridvis(file_ms,
imsize=2048,
hermitian_symmetry=False,
dx=None,
wantdirtymap=False):
print("processing: ", file_ms)
x = DaskMS(input_name=file_ms)
dataset = x.read()
#dataset.field.mean_ref_dir
#dataset.psf[0].sigma
if hermitian_symmetry:
h_symmetry = HermitianSymmetry(input_data=dataset)
h_symmetry.apply()
dx_theo = Quantity(dataset.theo_resolution)
dx_theo = dx_theo.to(u.arcsec)
print("theoretical formula for finest angular scale ", dx_theo)
print("recommended pixel size", dx_theo / 7.)
if dx == None:
print("using theoretical formula for pixel size")
dx = dx_theo / 10.
else:
print("sky image pixels: ", dx.to(u.arcsec))
# du = (1/(imsize*dx)).to(u.lambdas, equivalencies=lambdas_equivalencies())
gridder = Gridder(imsize=imsize,
cellsize=dx,
padding_factor=1.0,
hermitian_symmetry=hermitian_symmetry)
dirty_mapper = DirtyMapper(input_data=dataset,
imsize=imsize,
padding_factor=1.0,
cellsize=dx,
stokes="I,Q",
hermitian_symmetry=False)
dirty_images_natural = dirty_mapper.transform()
gridded_visibilities_nat = dirty_mapper.uvgridded_visibilities.compute()
gridded_weights_nat = dirty_mapper.uvgridded_weights.compute()
if wantdirtymap:
dirty_image_natural = dirty_images_natural[0].data[0].compute()
dirty_beam_natural = dirty_images_natural[1].data[0].compute()
fits_io = FITS()
fits_io.write(dirty_images_natural[0].data, output_name=wantdirtymap)
return dx, gridded_visibilities_nat, gridded_weights_nat
def xcorr(file_visSBs,
file_visLBs,
dx,
imsize,
Grid=True,
Grid_LBs=True,
uvrange=False,
DefaultUvrange=False,
DoMinos=False,
kernel_w_L=5,
kernel_w_S=5,
wprof_factor=10.,
min_wS=100.,
min_wL=100.,
outputdir='output_xcorr/'):
nx = imsize
ny = imsize
os.system('mkdir ' + outputdir)
file_gridded_vis_SBs = outputdir + 'SBs_aligned_gridded_visibilities_nat.npy'
file_gridded_weights_SBs = outputdir + 'SBs_aligned_gridded_weights_nat.npy'
file_gridded_vis_LBs = outputdir + 'LBs_gridded_visibilities_nat.npy'
file_gridded_weights_LBs = outputdir + 'LBs_gridded_weights_nat.npy'
if Grid:
#file_dirty = re.sub('.ms', '.fits', file_visSBs)
file_dirty = 'dirty_' + os.path.basename(file_visSBs) + '.fits'
dx, SBs_gridded_visibilities_nat, SBs_gridded_weights_nat = gridvis(
file_visSBs, imsize=imsize, wantdirtymap=file_dirty, dx=dx)
np.save(file_gridded_vis_SBs, SBs_gridded_visibilities_nat)
np.save(file_gridded_weights_SBs, SBs_gridded_weights_nat)
print("sky image pixels: ", dx.to(u.arcsec))
if Grid_LBs:
#file_dirty = re.sub('.ms', '.fits', file_visLBs)
#file_dirty = 'dirty_' + file_dirty
#file_dirty = re.sub('.ms', '.fits', file_visSBs)
file_dirty = 'dirty_' + os.path.basename(file_visLBs) + '.fits'
dx, LBs_gridded_visibilities_nat, LBs_gridded_weights_nat = gridvis(
file_visLBs, imsize=imsize, wantdirtymap=file_dirty, dx=dx)
np.save(file_gridded_vis_LBs, LBs_gridded_visibilities_nat)
np.save(file_gridded_weights_LBs, LBs_gridded_weights_nat)
du = (1 / (imsize * dx)).to(u.lambdas,
equivalencies=lambdas_equivalencies())
SBs_gridded_visibilities_nat = np.load(file_gridded_vis_SBs)
SBs_gridded_weights_nat = np.load(file_gridded_weights_SBs)
LBs_gridded_visibilities_nat = np.load(file_gridded_vis_LBs)
LBs_gridded_weights_nat = np.load(file_gridded_weights_LBs)
print("SBs_gridded_visibilities_nat.shape",
SBs_gridded_visibilities_nat.shape)
print(SBs_gridded_visibilities_nat.dtype)
print(SBs_gridded_weights_nat.shape)
V_S = SBs_gridded_visibilities_nat[0, :, :]
V_SR = SBs_gridded_visibilities_nat[0, :, :].real
V_SI = SBs_gridded_visibilities_nat[0, :, :].imag
V_L = LBs_gridded_visibilities_nat[0, :, :]
V_LR = LBs_gridded_visibilities_nat[0, :, :].real
V_LI = LBs_gridded_visibilities_nat[0, :, :].imag
w_S = SBs_gridded_weights_nat[0, :, :]
w_L = LBs_gridded_weights_nat[0, :, :]
from scipy.signal import medfilt2d
print('filtering V_L')
# wmedian = np.median(w_L[(w_L > 0.)])
wmedian = medfilt2d(w_L, kernel_size=kernel_w_L)
#print("wmedian:", wmedian)
mask = ((w_L < wmedian / 2.) | (w_L < min_wL))
V_L[mask] = 0
V_LR[mask] = 0.
V_LI[mask] = 0.
w_L[mask] = 0.
print('filtering V_S')
#wmedian = np.median(w_S[(w_S > 0.)])
wmedian = medfilt2d(w_S, kernel_size=kernel_w_S)
#print("wmedian:", wmedian)
mask = ((w_S < wmedian / 2.) | (w_S < min_wS))
V_S[mask] = 0
V_SR[mask] = 0.
V_SI[mask] = 0.
w_S[mask] = 0.
w = w_L * w_S / (w_L + w_S)
w[(w_L < min_wL) | (w_S < min_wS)] = 0.
w = np.nan_to_num(w)
V_S = np.nan_to_num(V_S)
V_L = np.nan_to_num(V_L)
dofs = np.sum((w > 0.))
print("dofs = ", dofs)
Vamp_S = np.sqrt(V_SI**2 + V_SR**2)
Vamp_L = np.sqrt(V_LI**2 + V_LR**2)
print("uv cell size", du)
us = -1 * (np.arange(0, nx) - (nx - 1.) / 2.) * du.value
vs = (np.arange(0, ny) - (ny - 1.) / 2.) * du.value
uus, vvs = np.meshgrid(us, vs)
uvradss = np.sqrt(uus**2 + vvs**2)
print("max uvrange: ", np.max(uvradss))
import matplotlib
import matplotlib.pyplot as plt
w_L_polar = polarexpand(w_L)
w_L_prof = np.median(w_L_polar, axis=1)
nphis, nrs = w_L_polar.shape
uvrads = (np.arange(nrs)) * du.value
plt.plot(uvrads, w_L_prof, label='w_L', color='C1')
maskprof = ((w_L_prof > np.max(w_L_prof) / wprof_factor))
#iw1=np.argmin(uvrads[maskprof])
#iw2=np.argmax(uvrads[maskprof])
uvmin_L = np.min(uvrads[maskprof])
uvmax_L = np.max(uvrads[maskprof])
w_S_polar = polarexpand(w_S)
w_S_prof = np.median(w_S_polar, axis=1)
plt.plot(uvrads, w_S_prof, label='w_S', color='C0')
maskprof = ((w_S_prof > np.max(w_S_prof) / wprof_factor))
#iw1=np.argmin(uvrads[maskprof])
#iw2=np.argmax(uvrads[maskprof])
uvmin_S = np.min(uvrads[maskprof])
uvmax_S = np.max(uvrads[maskprof])
uvminreco = max((uvmin_S, uvmin_L))
uvmaxreco = min((uvmax_S, uvmax_L))
print("recommended uvrange: ", uvminreco, uvmaxreco)
plt.legend()
print("plotting w profiles to: wprofs.pdf")
plt.savefig(outputdir + 'wprofs_full.pdf', bbox_inches='tight')
plt.xlim(uvminreco, uvmaxreco)
plt.legend()
print("plotting w profiles to: wprofs.pdf")
plt.savefig(outputdir + 'wprofs.pdf', bbox_inches='tight')
if uvrange:
uvmin = uvrange[0]
uvmax = uvrange[1]
elif DefaultUvrange:
uvmin = uvminreco
uvmax = uvmaxreco
w_nonnill = np.sum((w > 0.))
print("w_nonnill ", w_nonnill)
if uvmin > 0:
print("uvradss.shape", uvradss.shape)
print("uvmin", uvmin)
print("w.shape", w.shape)
w[(uvradss < uvmin)] = 0.
print("chosen uvrange clips out uvrads < ", uvmin)
if uvmax > 0:
w[(uvradss > uvmax)] = 0.
print("chosen uvrange clips out uvrads > ", uvmax)
w_nonnill = np.sum((w > 0.))
print("w_nonnill ", w_nonnill)
wmask = (w <= min_wS)
w[wmask] = 0.
Vamp_S_wfilt = Vamp_S.copy()
Vamp_S_wfilt[wmask] = 0.
Vamp_L_wfilt = Vamp_L.copy()
Vamp_L_wfilt[wmask] = 0.
V_S_wfilt = V_S.copy()
V_S_wfilt[wmask] = 0.
V_SR_wfilt = V_SR.copy()
V_SR_wfilt[wmask] = 0.
V_SI_wfilt = V_SI.copy()
V_SI_wfilt[wmask] = 0.
w_S_wfilt = w_S.copy()
w_S_wfilt[wmask] = 0.
V_L_wfilt = V_L.copy()
V_L_wfilt[wmask] = 0.
V_LR_wfilt = V_LR.copy()
V_LR_wfilt[wmask] = 0.
V_LI_wfilt = V_LI.copy()
V_LI_wfilt[wmask] = 0.
w_L_wfilt = w_L.copy()
w_L_wfilt[wmask] = 0.
alpha_R = np.sum(w *
(V_SR * V_LR + V_SI * V_LI)) / np.sum(w *
(V_SR**2 + V_SI**2))
alpha_I = np.sum(w *
(V_LR * V_SI - V_SR * V_LI)) / np.sum(w *
(V_SR**2 + V_SI**2))
print("alpha_R", alpha_R, "use this to scale flux calibrations")
print("alpha_I", alpha_I)
alpha_mod = np.sqrt(alpha_R**2 + alpha_I**2)
alpha_phase = (180. / np.pi) * np.arctan2(alpha_I, alpha_R)
print("alpha_mod ", alpha_mod)
print("alpha_phase ", alpha_phase)
print("setting up Minuit")
Fix_alpha_R = False
f = lambda alpha_R, delta_x, delta_y: chi2(V_S_wfilt, V_L_wfilt, w, uus,
vvs, alpha_R, delta_x, delta_y)
m = Minuit(f, alpha_R=alpha_R, delta_x=0., delta_y=0.)
# m = Minuit(f, alpha_R=1., delta_x=0., delta_y=0.)
m.tol = 1e-4
m.errors['alpha_R'] = 1E-3
m.errors['delta_x'] = 1E-4
m.errors['delta_y'] = 1E-4
m.limits['delta_x'] = (-0.5, 0.5)
m.limits['delta_y'] = (-0.5, 0.5)
if Fix_alpha_R:
m.fixed['alpha_R'] = True
else:
m.limits['alpha_R'] = (0., 10.)
m.errordef = Minuit.LEAST_SQUARES
print("start Minuit.migrad")
m.migrad()
m.hesse()
print("m.params", m.params)
print("m.errors", m.errors)
if DoMinos:
print("start Minuit.minos")
m.minos()
params = m.params
print("Best fit:")
for iparam, aparam in enumerate(params):
aparam_name = aparam.name
aparam_value = aparam.value
print(aparam_name, aparam_value)
pars = [m.values['alpha_R'], m.values['delta_x'],
m.values['delta_y']] # pars for best fit
err_pars = [m.errors['alpha_R'], m.errors['delta_x'],
m.errors['delta_y']] #error in pars
print("best fit ", pars)
print("errors ", err_pars)
bestchi2 = chi2(V_S, V_L, w, uus, vvs, m.values['alpha_R'],
m.values['delta_x'], m.values['delta_y'])
print("bestchi2 ", bestchi2)
print("red bestchi2 ", bestchi2 / dofs)
print("Hessian errors scaled for red chi2 = 1")
print("errors ", np.array(err_pars) * np.sqrt(bestchi2 / dofs))
file_bestfitparams = outputdir + 'bestfit_xcorr_wshift.npy'
np.save(file_bestfitparams, pars)
V_L_m = shiftvis(V_S, uus, vvs, m.values['alpha_R'], m.values['delta_x'],
m.values['delta_y'])
V_L_m_wfilt = V_L_m.copy()
V_L_m_wfilt[wmask] = 0.
punch_vis(V_L_m.real, du, outputdir + 'V_LmR.fits')
punch_vis(V_L_m.imag, du, outputdir + 'V_LmI.fits')
punch_vis(w_S, du, outputdir + 'w_Lm.fits')
punch_vis(V_L_m_wfilt.real, du, outputdir + 'V_LmR_wfilt.fits')
punch_vis(V_L_m_wfilt.imag, du, outputdir + 'V_LmI_wfilt.fits')
punch_vis(w, du, outputdir + 'w_Lm_wfilt.fits')
punch_vis(w, du, outputdir + 'w.fits')
punch_vis(V_SR, du, outputdir + 'V_SR.fits')
punch_vis(V_SI, du, outputdir + 'V_SI.fits')
punch_vis(Vamp_S, du, outputdir + 'Vamp_S.fits')
punch_vis(w_S, du, outputdir + 'w_S.fits')
punch_vis(V_SR_wfilt, du, outputdir + 'V_SR_wfilt.fits')
punch_vis(V_SI_wfilt, du, outputdir + 'V_SI_wfilt.fits')
punch_vis(Vamp_S_wfilt, du, outputdir + 'Vamp_S_wfilt.fits')
punch_vis(w, du, outputdir + 'w_S_wfilt.fits')
punch_vis(V_LR, du, outputdir + 'V_LR.fits')
punch_vis(V_LI, du, outputdir + 'V_LI.fits')
punch_vis(Vamp_L, du, outputdir + 'Vamp_L.fits')
punch_vis(w_L, du, outputdir + 'w_L.fits')
punch_vis(V_LR_wfilt, du, outputdir + 'V_LR_wfilt.fits')
punch_vis(V_LI_wfilt, du, outputdir + 'V_LI_wfilt.fits')
punch_vis(Vamp_L_wfilt, du, outputdir + 'Vamp_L_wfilt.fits')
punch_vis(w, du, outputdir + 'w_L_wfilt.fits')
#file_visSBs = 'PDS70_SB16_cont_chi2_casarestore.ms.selfcal.statwt'
#file_visLBs = 'PDS70_cont_copy_verylowS_casarestore.ms.selfcal.statwt'
#dx = 0.004 * u.arcsec #LBs
#imsize = 2048
#
#xcorr(file_visSBs,
# file_visLBs,
# dx,
# imsize,
# Grid=True,
# Grid_LBs=True,
# outputdir='output_xcorr/')
#
#
#