-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfuncs_Optim_DCone.py
870 lines (705 loc) · 30.6 KB
/
funcs_Optim_DCone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
import sys
import os
import os.path
from astropy.io import fits as pf
import scipy.optimize as op
from multiprocessing import Pool
from iminuit import Minuit
import matplotlib.pyplot as plt
import emcee
include_path = '/home/simon/common/python/include/'
sys.path.append(include_path)
from ConeRot.DConeMaps import *
import ConeRot.KineSummary as KineSummary
import time
#from time import gmtime, strftime
t_i = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime())
def pass_model(Mpass, OptimMpass):
global M
global OptimM
M = Mpass
OptimM = OptimMpass
def neglnlike4Minuit(*args):
theta = arange(len(args))
for iparam in range(len(args)):
theta[iparam] = args[iparam]
print('theta', theta)
retval = -1. * lnlike(theta)
print("retval", retval)
return retval
def lnlike(theta):
nvar = len(theta)
names = list(map((lambda x: x[0]), M.domain))
for iparam in range(nvar):
setattr(M, names[iparam], theta[iparam])
#aPA=theta[0]
#ainc=theta[1]
#apsi=theta[2]
#acosi=np.cos(np.pi*ainc/180.)
#atanpsi=np.tan(np.pi*apsi/180.)
chi2 = M.conicpolar_expansions()
statusstring = ''
for iparam in range(nvar):
statusstring = statusstring + names[iparam] + " " + str(
theta[iparam]) + " "
#statusstring=statusstring+" -> "+str(chi2)+" "+str(M.velodev_med)
statusstring = statusstring + " -> " + str(chi2)
if (M.PrintOptimStatus):
print(statusstring)
return -0.5 * chi2
def lnprior(theta):
inside = 1
bnds = list(map((lambda x: x[1]), M.domain))
for iparam in list(range(len(theta))):
if (bnds[iparam][0] < theta[iparam] < bnds[iparam][1]):
inside *= 1
else:
inside *= 0
if (inside):
return 0.0
else:
return -np.inf
#def lnprob(theta, bnds):
# lp = lnprior(theta,bnds)
# if not np.isfinite(lp):
# return -np.inf
# return lp + lnlike(theta)
def lnprob(theta):
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + lnlike(theta)
def run_scipy_optimize_minimize(M, OptimM, x, bnds):
pass_model(M, OptimM)
print("starting op.minimize")
start_time = time.time()
nll = lambda *args: -lnlike(*args)
print("domain: ", M.domain)
#ftol=0.00001 # 1e-10 too small leads to abnormal termination
ftol = 0.001 # 1e-10 too small leads to abnormal termination
result = op.minimize(nll, x, tol=ftol, bounds=bnds, options={'eps': 1E-4})
print("result", result)
result_ml = result["x"]
print("Optim done in (elapsed time):", time.time() - start_time)
print("computing errors with Hessian")
tmp_i = np.zeros(len(result_ml))
errors_ml = np.zeros(len(result_ml))
for i in list(range(len(result_ml))):
tmp_i[i] = 1.0
uncertainty_i = np.sqrt(result.hess_inv(tmp_i)[i])
errors_ml[i] = uncertainty_i
tmp_i[i] = 0.0
print(('{0:12.4e} +- {1:.1e}'.format(result.x[i], uncertainty_i)))
return (result_ml, errors_ml)
def run_Minuit(M, OptimM, x, bnds, names):
pass_model(M, OptimM)
print("starting op.minimize")
start_time = time.time()
# f = lambda *args: -lnlike(*args)
f = lambda *args: -neglnlike4Minuit(*args)
# a,mu,sigma,a2,mu2,sigma2,base_a,base_b: chi2_2gauss_wbase(selected_velocities, a, mu, sigma, a2, mu2, sigma2, signal_a, rmsnoise, baseparams=[base_a,base_b])
minuitkeyargs = {}
for i in list(range(len(x))):
minuitkeyargs[names[i]] = x[i]
minuitkeyargs['limit_' + names[i]] = bnds[i]
stepsize = abs((bnds[i][1] - bnds[i][0]) / 100.)
minuitkeyargs['error_' + names[i]] = stepsize
minuitkeyargs['errordef'] = 1
minuitkeyargs['print_level'] = 0
minuitkeyargs['pedantic'] = 0
print("minuitkeyargs", minuitkeyargs)
m = Minuit(f, **minuitkeyargs)
m.migrad()
print("Minuit optim done in (elapsed time):", time.time() - start_time)
print("computing errors with Hessian")
m.hesse()
result_ml = np.zeros(len(x))
errors_ml = np.zeros(len(x))
for i in list(range(len(x))):
result_ml[i] = m.values[names[i]]
errors_ml[i] = m.erros[names[i]]
print(('{0:12.4e} +- {1:.1e}'.format(result_ml[i], errors_ml[i])))
return (result_ml, errors_ml)
def exec_ConjGrad_1region(M, OptimM):
print("M.domain", M.domain)
names = list(map((lambda x: x[0]), M.domain))
bnds = list(map((lambda x: x[1]), M.domain))
nvar = len(list(names))
sample_theta = list(range(nvar))
if M.InheritGlobalInit:
M.PA = M.PA0
M.inc = M.inc0
M.tanpsi = M.tanpsi0
for iparam in list(range(nvar)):
sample_theta[iparam] = getattr(M, names[iparam])
x = np.array(sample_theta)
M.DumpAllFitsFiles = False
M.Verbose = False
M.prep_files()
M.grid_4center()
if M.DoMinuit:
(result_ml, errors_ml) = run_Minuit(M, OptimM, x, bnds, names)
else:
(result_ml,
errors_ml) = run_scipy_optimize_minimize(M, OptimM, x, bnds)
#pass_model(M,OptimM)
#print( "starting op.minimize")
#start_time=time.time()
#nll = lambda *args: -lnlike(*args)
#print( "domain: ",M.domain)
##print( "bnds",bnds)
#ftol=0.00001 # 1e-10 too small leads to abnormal termination
#result = op.minimize(nll, x, tol=ftol,bounds=bnds,options={'eps':1E-4})
#print( "result",result)
#result_ml = result["x"]
#print( "Optim done in (elapsed time):", time.time()-start_time)
#print( "computing errors with Hessian")
#tmp_i = np.zeros(len(result_ml))
#errors_ml= np.zeros(len(result_ml))
#for i in list(range(len(result_ml))):
# tmp_i[i] = 1.0
# #uncertainty_i = np.sqrt(ftol*result.hess_inv(tmp_i)[i])
# uncertainty_i = np.sqrt(result.hess_inv(tmp_i)[i])
# errors_ml[i]=uncertainty_i
# tmp_i[i] = 0.0
# print(('{0:12.4e} +- {1:.1e}'.format(result.x[i], uncertainty_i)))
np.save(M.workdir + 'result_ml.dat', result_ml)
np.save(M.workdir + 'result_ml_errors.dat', errors_ml)
return result_ml
def exec_emcee(M, result_ml, RunMCMC, OptimM):
Nit = OptimM.Nit
nwalkers = OptimM.nwalkers
n_cores = OptimM.n_cores_MCMC
burn_in = OptimM.burn_in #100
pass_model(M, OptimM)
workdir = M.workdir
names = list(map((lambda x: x[0]), M.domain))
bnds = list(map((lambda x: x[1]), M.domain))
nvar = len(names)
print("mcmc with nvar=", nvar)
#ndim =nvar
##ndim, nwalkers = nvar, 60
#pos = [result_ml + 1e-1*np.random.randn(ndim) for i in list(range(nwalkers))]
ranges = list(map((lambda x: x[1][1] - x[1][0]), M.domain))
lowerlimits = list(map((lambda x: x[1][0]), M.domain))
upperlimits = list(map((lambda x: x[1][1]), M.domain))
allowed_ranges = np.array(ranges)
print("allowed_ranges ", allowed_ranges)
nvar = len(names)
print("mcmc with nvar=", nvar)
ndim = nvar
#ndim, nwalkers = nvar, 60
#pos = [result_ml + 1e-1*np.random.randn(ndim) for i in list(range(nwalkers))]
pos = []
for i in list(range(nwalkers)):
if (np.any(allowed_ranges < 0.)):
sys.exit("wrong order of bounds in domains")
if M.BlindMCMC:
awalkerinit = (
(np.random.random(ndim)) * allowed_ranges) + lowerlimits
if np.any(awalkerinit < lowerlimits):
sys.exit("BUG init MCMC lowerlimits")
if np.any(awalkerinit > upperlimits):
sys.exit("BUG init MCMC uplimits")
else:
awalkerinit = result_ml + (1e-3 * np.random.randn(ndim) *
allowed_ranges)
for j in list(range(ndim)):
lowerlimit = bnds[j][0]
upperlimit = bnds[j][1]
if (awalkerinit[j] < lowerlimit):
awalkerinit[j] = lowerlimit
if (awalkerinit[j] > upperlimit):
awalkerinit[j] = upperlimit
#if np.any((awalkerinit < lowerlimits)):
# #try:
# awalkerinit[(awalkerinit < lowerlimits)]= lowerlimits[ (awalkerinit < lowerlimits)]
# #except:
# # print("awalkerinit",awalkerinit)
# # print("lowerlimits",lowerlimits)
# # print("(awalkerinit < lowerlimits)",(awalkerinit < lowerlimits))
#
#if np.any((awalkerinit > upperlimits)):
# #try:
# awalkerinit[(awalkerinit > upperlimits)]= upperlimits[ (awalkerinit > upperlimits)]
# #except:
# # print("awalkerinit",awalkerinit)
# # print("upperlimits",upperlimits)
# # print("(awalkerinit > upperlimits)",(awalkerinit > upperlimits))
pos.append(awalkerinit)
print("init for emcee :", result_ml)
if RunMCMC:
print(bnds)
print("funcs_Optim_DCone: calling emcee with Nit", Nit,
" nmwalkers", nwalkers, " n_cores", n_cores)
#sampler = emcee.ensemblesampler(nwalkers, ndim, lnprob, args=(bnds))
#os.environ["OMP_NUM_THREADS"] = "1"
#sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, threads=n_cores)
##sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob)
#sampler.run_mcmc(pos, Nit)
from multiprocessing import Pool
with Pool(processes=n_cores) as pool:
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool)
start = time.time()
sampler.run_mcmc(pos, Nit, progress=True)
end = time.time()
multi_time = end - start
print("Multiprocessing took {0:.1f} seconds".format(multi_time))
print("************ finish ***************")
samples = sampler.chain # chain= array(nwalkers,nit,ndim)
lnprobs = sampler.lnprobability
######### save samples
np.save(workdir + 'samples.dat', samples)
np.save(workdir + 'lnprobs.dat', lnprobs)
# end time
t_f = time.strftime("%y-%m-%d %h:%m:%s", time.gmtime())
print("t_i = " + str(t_i))
print("t_f = " + str(t_f))
print(("mean acceptance fraction: {0:.3f} ".format(
np.mean(sampler.acceptance_fraction))))
f = open(workdir + 'acceptance.dat', 'w')
f.write(str(t_i) + ' \n')
f.write(str(t_f) + ' \n')
f.write("Nit = " + str(Nit) + ' \n')
f.write("nwalkers = " + str(nwalkers) + ' \n')
f.write("ndim = " + str(ndim) + ' \n')
f.write("mean acceptance fraction: {0:.3f}".format(
np.mean(sampler.acceptance_fraction)) + ' \n')
f.close()
#autocorr=sampler.get_autocorr_time(c=1, low=1)
#print( "autocorr\n",autocorr )
else:
samples = np.load(workdir + 'samples.dat.npy')
lnprobs = np.load(workdir + 'lnprobs.dat.npy')
chains = np.zeros(((Nit - burn_in) * nwalkers, ndim))
chains2 = np.zeros((Nit - burn_in, nwalkers, ndim))
lnpchain = np.zeros(((Nit - burn_in) * nwalkers))
lnpchain2 = np.zeros(((Nit - burn_in), nwalkers))
chains[:, :] = samples[:, burn_in:, :].reshape(
(nwalkers * (Nit - burn_in), ndim), order='c')
lnpchain[:] = lnprobs[:, burn_in:].reshape((nwalkers * (Nit - burn_in)),
order='c')
ibestparams = np.argmax(lnpchain)
bestparams = chains[ibestparams, :]
######### save bestparams
np.save(workdir + 'bestparams.dat', bestparams)
for j in list(range(nwalkers)):
chains2[:, j, :] = samples[j, burn_in:, :].reshape(
(Nit - burn_in, ndim), order='c')
lnpchain2[:, j] = lnprobs[j, burn_in:].reshape(((Nit - burn_in)),
order='c')
fig = plt.figure(figsize=(10, 8))
par_labels = names
ax_lnprob = fig.add_subplot(ndim + 1, 1, ndim + 1)
for ip in list(range(ndim)):
ax_chain = fig.add_subplot(ndim + 1, 1, ip + 1)
for i in list(range(nwalkers)):
ax_chain.plot(chains2[:, i, ip], alpha=0.1)
ax_chain.set_ylabel(par_labels[ip])
ax_lnprob.plot(lnpchain2[:, i], alpha=0.1)
ax_lnprob.set_ylabel('ln(p)')
#plt.show()
plt.savefig(workdir + 'chains.png', bbox_inches='tight')
plt.close(fig)
#samples = sampler.chain[:, burn_in:, :].reshape((-1, ndim))
mcmc_results = list(
map(lambda v: (v[1], v[2] - v[1], v[1] - v[0]),
zip(*np.percentile(chains, [16, 50, 84], axis=0))))
np.save(workdir + 'mcmc_results.dat', mcmc_results)
mcmc_results_0 = np.zeros(nvar)
print("param distrib max ")
for iparam in list(range(nvar)):
print(names[iparam], mcmc_results[iparam], bestparams[iparam])
mcmc_results_0[iparam] = mcmc_results[iparam][0]
#print( "mcmc median values:")
#model_median = np.array(modelfunk(mcmc_results_0, m))
import corner
fig = corner.corner(chains,
labels=names,
quantiles=[0.16, 0.5, 0.84],
bins=20,
truths=bestparams,
levels=[0.68, 0.95, 0.997],
show_titles=True,
title_fmt=".3f",
title_kwards={"fontsize": 10}) #, smooth=1.0
fig.savefig(workdir + M.TriangleFile)
print("finished MCMC for region workdir", workdir)
return [names, mcmc_results]
######################################################################
#Regions
def proc_1region(iregion):
names = list(map((lambda x: x[0]), M.domain))
bnds = list(map((lambda x: x[1]), M.domain))
nvar = len(names)
sample_theta = list(range(nvar))
for iparam in list(range(nvar)):
sample_theta[iparam] = getattr(M, names[iparam])
M.iregion = iregion
x = np.array(sample_theta)
amesh = M.a_min_regions + np.arange(M.n_abins + 1) * (
M.a_max_regions - M.a_min_regions) / M.n_abins
ameshbis = np.roll(amesh, -1)
#M.filelog='log_output_region'+str(iregion)+'.txt'
#print( "opening log for region"+str(iregion)+":",M.workdir+M.filelog)
M.a_min = amesh[iregion]
M.a_max = ameshbis[iregion + 1]
print(">>>>> iregion ", iregion, " from ", M.a_min, " to ", M.a_max)
logstring = ">>>>> " + str(iregion) + " from %.3f to %.3f \n" % (M.a_min,
M.a_max)
M.DumpAllFitsFiles = False
M.Verbose = False
masterworkdir = M.workdir
workdir_region = masterworkdir + 'work_region_' + str(iregion) + '/'
os.system("rm -rf " + workdir_region)
os.system("mkdir " + workdir_region)
M.workdir = workdir_region
M.ComputeSkyImages = False
# pass_model(M,OptimM)
if M.DoConjGrad:
(result_ml,
errors_ml) = run_scipy_optimize_minimize(M, OptimM, x, bnds)
if (M.StoreRegions):
np.save(
workdir_region + 'result_ml_region' + str(iregion) + '.dat',
result_ml)
np.save(masterworkdir + 'result_ml_region' + str(iregion) + '.dat',
result_ml)
np.save(M.workdir + 'result_ml.dat', result_ml)
np.save(
masterworkdir + 'result_ml_errors_region' + str(iregion) + '.dat',
errors_ml)
np.save(M.workdir + 'result_ml_errors.dat', errors_ml)
result_ml = np.load(masterworkdir + 'result_ml_region' + str(iregion) +
'.dat.npy')
errors_ml = np.load(masterworkdir + 'result_ml_errors_region' +
str(iregion) + '.dat.npy')
print("result_ml_region is ", result_ml)
for iparam in list(range(nvar)):
print(names[iparam], "->", result_ml[iparam])
setattr(M, names[iparam], result_ml[iparam])
logstring = logstring + names[iparam] + "-> %.6f +- %.7f " % (
result_ml[iparam], errors_ml[iparam])
logstring = logstring + "\n"
if (M.RunMCMC):
M.TriangleFile = 'triangle_' + str(iregion) + '.png'
#OptimM=Optim_DCone.OptimModel(M,RunMCMC=True,Nit=Nit,nwalkers=nwalkers,n_cores_MCMC=n_cores_MCMC)
print("running emcee for region " + str(iregion))
print("M.RunMCMC", M.RunMCMC)
retvals = OptimM.emcee(M)
print("returned from OptimM.emcee")
names = retvals[0]
mcmc_results = retvals[1]
# [names, mcmc_results] =
print("looping over MCMC optim")
logstring += "emcee posterior\n"
for iparam in list(range(nvar)):
strparams = names[
iparam] + " -> %.6f %.6f %.6f " % mcmc_results[iparam]
logstring = logstring + strparams + "\n"
# OptimM.RecoverMCMC(M)
if (M.StoreRegions):
M.DumpAllFitsFiles = True
M.prep_files()
M.grid_4center()
M.ComputeSkyImages = True
chi2 = M.conicpolar_expansions()
print("chi2=", chi2)
if (M.StoreRegions):
inbasename = os.path.basename(M.filename_source)
inbasename = re.sub('.fits', '', inbasename)
inbasename = workdir_region + inbasename
fileout = inbasename + '_fig_summary_region' + str(iregion) + '.pdf'
exec_summary(inbasename, fileout)
M.workdir = masterworkdir
# if M.DoDCone:
# # return [iregion,M.Hduregion.data,M.Hdudiff.data,M.Hdumoddrot.data,logstring,M.Hdumumap.data,M.HduDConemoddrot.data,M.HdudiffDConemoddrot.data,M.RadialProfile,M.a_min,M.a_max]
# return [iregion,M,logstring]
#else:
# # return [iregion,M.Hduregion.data,M.Hdudiff.data,M.Hdumoddrot.data,logstring,M.RadialProfile,M.a_min,M.a_max]
# return [iregion,M,logstring]
print("Done processing region ", iregion)
if M.DoDCone:
return [
iregion, logstring, M.Hduregion.data, M.Hdudiff.data,
M.Hdumoddrot.data, M.RadialProfile, M.a_min, M.a_max,
M.Hdudiff_faceon.data, M.Hduresamp_faceon.data,
M.Hduregion_faceon.data, M.Hdumumap.data, M.HduDConemoddrot.data,
M.HdudiffDConemoddrot.data
]
else:
return [
iregion,
logstring,
M.Hduregion.data,
M.Hdudiff.data,
M.Hdumoddrot.data,
M.RadialProfile,
M.a_min,
M.a_max,
M.Hdudiff_faceon.data,
M.Hduresamp_faceon.data,
M.Hduregion_faceon.data,
M.Hdurrs.data,
M.Hdurrs_faceon.data,
M.Hduphis.data,
M.Hduphis_faceon.data,
]
def exec_Regions(M, OptimM):
n_cores_regions = OptimM.n_cores_regions
print("n_cores_regions = ", n_cores_regions)
amesh = M.a_min_regions + np.arange(M.n_abins + 1) * (
M.a_max_regions - M.a_min_regions) / M.n_abins
ameshbis = np.roll(amesh, -1)
print("amesh ", amesh)
print("ameshbis ", ameshbis)
im_c = M.Hducentered.data
hdr_c = M.Hducentered.header
(ny, nx) = im_c.shape
#print( "master shape:",(ny,nx))
cube_regions = np.zeros((M.n_abins - 1, ny, nx))
cube_imdrotdiff = np.zeros((M.n_abins - 1, ny, nx))
cube_immoddrot = np.zeros((M.n_abins - 1, ny, nx))
cube_im_diff_faceon = np.zeros((M.n_abins - 1, ny, nx))
cube_resamp_faceon = np.zeros((M.n_abins - 1, ny, nx))
cube_regions_faceon = np.zeros((M.n_abins - 1, ny, nx))
cube_rrs = np.zeros((M.n_abins - 1, ny, nx))
cube_rrs_faceon = np.zeros((M.n_abins - 1, ny, nx))
cube_phis = np.zeros((M.n_abins - 1, ny, nx))
cube_phis_faceon = np.zeros((M.n_abins - 1, ny, nx))
if M.DoDCone:
cube_mumap = np.zeros((M.n_abins - 1, ny, nx))
cube_imDConemoddrot = np.zeros((M.n_abins - 1, ny, nx))
cube_diffimDConemoddrot = np.zeros((M.n_abins - 1, ny, nx))
print("Regions M.fout", M.fout)
M.fout.write("Regions:\n")
M.PrintOptimStatus = False
workdir = M.workdir
if M.RunMCMC:
n_cores_regions = 1
pass_model(M, OptimM)
if (n_cores_regions > 1):
p = Pool(processes=n_cores_regions)
passoutput = p.map(proc_1region, range(M.n_abins - 1))
p.close()
else:
passoutput = []
for iregion in list(range(M.n_abins - 1)):
passoutput.append(proc_1region(iregion))
# rrs0=passoutput[0][-3][0]
rrs0 = passoutput[0][5][0]
nrs = len(rrs0)
stack_v_Phi_profiles = np.zeros((len(passoutput), nrs))
stack_v_R_profiles = np.zeros((len(passoutput), nrs))
stack_sv_R_profiles = np.zeros((len(passoutput), nrs))
stack_v_z_profiles = np.zeros((len(passoutput), nrs))
stack_sv_z_profiles = np.zeros((len(passoutput), nrs))
stack_sprofiles = np.zeros((len(passoutput), nrs))
stack_vecregions = np.zeros((len(passoutput), nrs))
for aregionoutput in passoutput:
iregion = aregionoutput[0]
logstring = aregionoutput[1]
cube_regions[iregion, :, :] = aregionoutput[2]
cube_imdrotdiff[iregion, :, :] = aregionoutput[3]
cube_immoddrot[iregion, :, :] = aregionoutput[4]
radialprofile = aregionoutput[5]
amin = aregionoutput[6]
amax = aregionoutput[7]
cube_im_diff_faceon[iregion, :, :] = aregionoutput[8]
cube_resamp_faceon[iregion, :, :] = aregionoutput[9]
cube_regions_faceon[iregion, :, :] = aregionoutput[10]
cube_rrs[iregion, :, :] = aregionoutput[11]
cube_rrs_faceon[iregion, :, :] = aregionoutput[12]
cube_phis[iregion, :, :] = aregionoutput[13]
cube_phis_faceon[iregion, :, :] = aregionoutput[14]
#diskgeometry=aregionoutput[11]
#HHs_sky_domain_top=diskgeometry['HHs_sky_domain_top']
#rrs_sky_domain_top=diskgeometry['rrs_sky_domain_top']
#phis_sky_domain_top=diskgeometry['phis_sky_domain_top']
M.fout.write(logstring)
rrs = radialprofile[0]
v_Phi_prof = radialprofile[1]
sv_Phi_prof = radialprofile[2]
if (M.DoMerid):
v_R_prof = radialprofile[3]
sv_R_prof = radialprofile[4]
v_z_prof = radialprofile[5]
sv_z_prof = radialprofile[6]
elif (M.DoAccr):
v_R_prof = radialprofile[3]
sv_R_prof = radialprofile[4]
vecregion = np.zeros(len(rrs))
vecregion[np.where((rrs >= amin) & (rrs <= amax))] = 1.
stack_v_Phi_profiles[iregion, :] = v_Phi_prof
stack_sprofiles[iregion, :] = sv_Phi_prof
stack_vecregions[iregion, :] = vecregion
if (M.DoMerid):
stack_v_z_profiles[iregion, :] = v_z_prof
stack_sv_z_profiles[iregion, :] = sv_z_prof
stack_v_R_profiles[iregion, :] = v_R_prof
stack_sv_R_profiles[iregion, :] = sv_R_prof
elif (M.DoAccr):
stack_v_R_profiles[iregion, :] = v_R_prof
stack_sv_R_profiles[iregion, :] = sv_R_prof
print("Collapsing regions")
vec_norm = np.sum(stack_vecregions, axis=0)
mask = (vec_norm < 0.1)
allrads_v_Phi_prof = np.sum(stack_v_Phi_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_v_Phi_prof[mask] = 0.
allrads_sv_Phi_prof = np.sum(stack_sprofiles * stack_vecregions,
axis=0) / vec_norm
allrads_sv_Phi_prof[mask] = 0.
if (M.DoMerid):
allrads_v_R_prof = np.sum(stack_v_R_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_v_R_prof[mask] = 0.
allrads_sv_R_prof = np.sum(stack_sv_R_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_sv_R_prof[mask] = 0.
allrads_v_z_prof = np.sum(stack_v_z_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_v_z_prof[mask] = 0.
allrads_sv_z_prof = np.sum(stack_sv_z_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_sv_z_prof[mask] = 0.
elif (M.DoAccr):
allrads_v_R_prof = np.sum(stack_v_R_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_v_R_prof[mask] = 0.
allrads_sv_R_prof = np.sum(stack_sv_R_profiles * stack_vecregions,
axis=0) / vec_norm
allrads_sv_R_prof[mask] = 0.
inbasename = os.path.basename(M.filename_source)
filename_fullim = re.sub('.fits', '_fullim.fits', inbasename)
filename_fullim = workdir + filename_fullim
fileout_cubediff = re.sub('fullim.fits', 'cube_azim_av_drot_diff.fits',
filename_fullim)
fileout_cuberegions = re.sub('fullim.fits', 'cube_regions.fits',
filename_fullim)
pf.writeto(fileout_cubediff, cube_imdrotdiff, hdr_c, overwrite=True)
pf.writeto(fileout_cuberegions, cube_regions, hdr_c, overwrite=True)
im_norm = np.sum(cube_regions, axis=0)
mask = (np.fabs(im_norm) < 0.01)
im_norm[mask] = 0.01
imrrs = np.sum(cube_rrs * cube_regions, axis=0) / im_norm
imrrs[mask] = 0.
imphis = np.sum(cube_phis * cube_regions, axis=0) / im_norm
imphis[mask] = 0.
imdrotdiff = np.sum(cube_imdrotdiff * cube_regions, axis=0) / im_norm
imdrotdiff[mask] = 0.
immoddrot = np.sum(cube_immoddrot * cube_regions, axis=0) / im_norm
immoddrot[mask] = 0.
imdrotdiff_b = im_c - immoddrot
imdrotdiff_b[mask] = 0.
im_norm_faceon = np.sum(cube_regions_faceon, axis=0)
mask_fon = (np.fabs(im_norm_faceon) < 0.01)
im_norm_faceon[mask_fon] = 0.01
imdiff_faceon = np.sum(cube_im_diff_faceon * cube_regions_faceon,
axis=0) / im_norm_faceon
imdiff_faceon[mask_fon] = 0.
imresamp_faceon = np.sum(cube_resamp_faceon * cube_regions_faceon,
axis=0) / im_norm_faceon
imresamp_faceon[mask_fon] = 0.
imrrs_faceon = np.sum(cube_rrs_faceon * cube_regions_faceon,
axis=0) / im_norm_faceon
imrrs_faceon[mask_fon] = 0.
imphis_faceon = np.sum(cube_phis_faceon * cube_regions_faceon,
axis=0) / im_norm_faceon
imphis_faceon[mask_fon] = 0.
if M.DoDCone:
imDConemoddrot = np.sum(cube_imDConemoddrot * cube_regions,
axis=0) / im_norm
imDConemoddrot[mask] = 0.
imdiffDConemoddrot = np.sum(cube_diffimDConemoddrot * cube_regions,
axis=0) / im_norm
imdiffDConemoddrot[mask] = 0.
immumap = np.sum(cube_mumap * cube_regions, axis=0) / im_norm
fileout_diff = re.sub('fullim.fits', 'allrads_azim_av_drot_diff.fits',
filename_fullim)
pf.writeto(fileout_diff, imdrotdiff, hdr_c, overwrite=True)
fileout_diff_b = re.sub('fullim.fits', 'allrads_azim_av_drot_diff_b.fits',
filename_fullim)
pf.writeto(fileout_diff_b, imdrotdiff_b, hdr_c, overwrite=True)
fileout_imnorm = re.sub('fullim.fits', 'imregions.fits', filename_fullim)
pf.writeto(fileout_imnorm, im_norm, hdr_c, overwrite=True)
fileout_immoddrot = re.sub('fullim.fits', 'allrads_azim_av_drot.fits',
filename_fullim)
pf.writeto(fileout_immoddrot, immoddrot, hdr_c, overwrite=True)
fileout_imrrs = re.sub('fullim.fits', 'rrs.fits', filename_fullim)
pf.writeto(fileout_imrrs, imrrs, hdr_c, overwrite=True)
fileout_imphis = re.sub('fullim.fits', 'phis.fits', filename_fullim)
pf.writeto(fileout_imphis, imphis, hdr_c, overwrite=True)
fileout_diff_faceon = re.sub('fullim.fits', 'allrads_diff_faceon.fits',
filename_fullim)
pf.writeto(fileout_diff_faceon, imdiff_faceon, hdr_c, overwrite=True)
fileout_resamp_faceon = re.sub('fullim.fits', 'allrads_resamp_faceon.fits',
filename_fullim)
pf.writeto(fileout_resamp_faceon, imresamp_faceon, hdr_c, overwrite=True)
fileout_imnorm_faceon = re.sub('fullim.fits', 'imregions_faceon.fits',
filename_fullim)
pf.writeto(fileout_imnorm_faceon, im_norm_faceon, hdr_c, overwrite=True)
fileout_imrrs_faceon = re.sub('fullim.fits', 'rrs_faceon.fits',
filename_fullim)
pf.writeto(fileout_imrrs_faceon, imrrs_faceon, hdr_c, overwrite=True)
fileout_imphis_faceon = re.sub('fullim.fits', 'phis_faceon.fits',
filename_fullim)
pf.writeto(fileout_imphis_faceon, imphis_faceon, hdr_c, overwrite=True)
if M.DoErrorMap:
im_c_w = M.Hduwcentered.data # _c -> centered
else:
im_c_w = np.ones(im_c.shape) * (1 / M.typicalerror**2)
regionsmask = np.where(im_norm_faceon > 0.9)
chi2regions = np.sum(im_c_w[regionsmask] *
(imdiff_faceon[regionsmask])**2) / M.Ncorr
M.fout.write("chi2regions=%.6e\n" % (chi2regions))
if (M.DoMerid):
save_prof = np.zeros((nrs, 7))
save_prof[:, 0] = rrs0
save_prof[:, 1] = allrads_v_Phi_prof
save_prof[:, 2] = allrads_sv_Phi_prof
save_prof[:, 3] = allrads_v_R_prof
save_prof[:, 4] = allrads_sv_R_prof
save_prof[:, 5] = allrads_v_z_prof
save_prof[:, 6] = allrads_sv_z_prof
elif (M.DoAccr):
save_prof = np.zeros((nrs, 5))
save_prof[:, 0] = rrs0
save_prof[:, 1] = allrads_v_Phi_prof
save_prof[:, 2] = allrads_sv_Phi_prof
save_prof[:, 3] = allrads_v_R_prof
save_prof[:, 4] = allrads_sv_R_prof
else:
save_prof = np.zeros((nrs, 3))
save_prof[:, 0] = rrs0
save_prof[:, 1] = allrads_v_Phi_prof
save_prof[:, 2] = allrads_sv_Phi_prof
fileout_allradsradialprofile = re.sub('fullim.fits',
'allrads_radial_profile.dat',
filename_fullim)
np.savetxt(fileout_allradsradialprofile,
save_prof) # x,y,z equal sized 1D arrays
if M.DoDCone:
fileout_imDConemoddrot = re.sub('fullim.fits',
'allrads_immod_DCone.fits',
filename_fullim)
pf.writeto(fileout_imDConemoddrot,
imDConemoddrot,
hdr_c,
overwrite=True)
fileout_imdiffDConemoddrot = re.sub('fullim.fits',
'allrads_diff_DCone.fits',
filename_fullim)
pf.writeto(fileout_imdiffDConemoddrot,
imdiffDConemoddrot,
hdr_c,
overwrite=True)
fileout_immumap = re.sub('fullim.fits', 'allrads_mumap.fits',
filename_fullim)
pf.writeto(fileout_immumap, immumap, hdr_c, overwrite=True)
inbasename = os.path.basename(M.filename_source)
inbasename = re.sub('.fits', '', inbasename)
inbasename = workdir + inbasename
fileout = inbasename + '_allrads_fig_summary.pdf'
KineSummary.exec_summary_allrads(inbasename, fileout, vsyst=M.vsyst)
return