-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstatistics.py
486 lines (358 loc) · 21.8 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import sys
import numpy as np
import cv2
import math
from utility.stat_utility import *
# Root directory of the project
ROOT_DIR = os.path.abspath("../../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
class Statistics:
def __init__(self):
self.line_points = []
self.resize = 1
self.possession = -1
#variables for statistics 1:
self.possesso_palla = np.array([0, 0, 0])
self.ball_cumulative_position = np.array([0, 0])
self.last_valid_ball = []
self.storia_possesso_palla = []
self.filtered_team_number = [] #team number con possesso palla
#self.history_players_near_ball = []
#per statistica 4
self.history_mean_dist_team1= []
self.history_mean_dist_team2= []
self.ballDX = False
self.ballSX = False
self.history_distance_ball_center = []
self.past_centroid_t1 = []
self.past_centroid_t2 = []
#per statistica 5:
self.pressione = np.array([0, 0])
def initialize(self, img, resize):
if 'COLAB_GPU' in os.environ:
print('Running on CoLab')
self.line_points = [(1932, 1113), (1806, 1767)]
return
else:
print('Not running on CoLab')
self.resize = resize
cv2.namedWindow("selectpoint")
cv2.setMouseCallback("selectpoint", self.draw_line) # param = None
(H, W) = img.shape[:2]
global i
i = cv2.resize(img, (int(W/3), int(H/3)))
cv2.putText(i, "Select 2 extreme points of the middle line and press Q", (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
while True:
# both windows are displaying the same img
cv2.imshow("selectpoint", i)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
print(self.line_points)
def draw_line(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
#center = (100,100)
#radius = calc_distance((x, y), center)
cv2.circle(i, (x, y), 2, (255, 0, 0), 2)
self.line_points.append((int((x*3)/self.resize), int((y*3)/self.resize)))
def generate_file(self,f, frame_id):
f.write("-----------------possesso palla:------------------- \n \n")
txt1 = "arbitro (frame/total_frame): " + str(self.possesso_palla[0]) + " / " + str(frame_id) + " -> " + str(int(self.possesso_palla[0] / frame_id * 100)) + "% \n"
f.write(txt1)
txt2 = "team A (frame/total_frame): " + str(self.possesso_palla[1]) + " / " + str(frame_id) + " -> " + str(int(self.possesso_palla[1] / frame_id * 100)) + "% \n"
f.write(txt2)
txt3 = "team B (frame/total_frame): " + str(self.possesso_palla[2]) + " / " + str(frame_id) + " -> " + str(int(self.possesso_palla[2] / frame_id * 100)) + "% \n"
f.write(txt3)
f.write("\n \n-----------------ball cumulative position:------------------- \n \n")
txt4 = "SX (frame/total_frame): " + str(self.ball_cumulative_position[0]) + " / " + str(frame_id) + " -> " + str(int(self.ball_cumulative_position[0] / frame_id * 100)) + "% \n"
f.write(txt4)
txt5 = "DX (frame/total_frame): " + str(self.ball_cumulative_position[1]) + " / " + str(frame_id) + " -> " + str(int(self.ball_cumulative_position[1] / frame_id * 100)) + "% \n"
f.write(txt5)
f.write("\n \n-----------------pressione difesa:------------------- \n \n")
txt6 = "affollamenti a SX: " + str(self.pressione[0]) + " / " + str(frame_id) + " -> " + str(int(self.pressione[1] / np.sum(self.pressione) * 100)) + "% \n"
f.write(txt6)
txt7 = "affollamenti a SX: " + str(self.pressione[1]) + " / " + str(frame_id) + " -> " + str(int(self.pressione[0] / np.sum(self.pressione) * 100)) + "% \n"
f.write(txt7)
return f
# Generazione statistica 1
def stat1(self,image,boxes_ball,boxes_team,team_numbers,fps,frame_id):
# possesso palla teams
if(len(boxes_ball) > 0) or (len(self.last_valid_ball) > 0):
if(len(boxes_ball) > 0):# a new valid ball position from the det+tracker
self.last_valid_ball = boxes_ball
else: #if the det+tracker doesn't find a ball use the last one position
boxes_ball = self.last_valid_ball
ball_players_distance = []
for box in boxes_team:
ball_players_distance.append(distance_boxes(box,boxes_ball[0]))
player_index = -1
if ball_players_distance != []:
player_index = np.argmin(ball_players_distance)
txt = "-"
self.possession = -1
if(ball_players_distance[player_index] < 150):
team_number = int(team_numbers[player_index])
self.storia_possesso_palla.append(team_number)
#the current team number is defined as the most recurrent number in the last 5 frame
self.filtered_team_number = int(np.median(self.storia_possesso_palla[-10:]))
self.possession = self.filtered_team_number
self.possesso_palla[self.filtered_team_number] = self.possesso_palla[self.filtered_team_number] + 1
image = draw_rect(image, boxes_team[player_index], (0,0,255))
circle_player(image, boxes_team[player_index], 150)
if (self.filtered_team_number) == 0:
txt = "Referee"
if (self.filtered_team_number) == 1:
txt = "Team 1"
if (self.filtered_team_number) == 2:
txt = "Team 2"
cv2.putText(
image, #numpy array on which text is written
txt, #text
(int(boxes_team[player_index][0]), int(boxes_team[player_index][1] - 60)), #position at which writing has to start
cv2.FONT_HERSHEY_SIMPLEX, #font family
1, #font size
(40, 40, 40, 255), #font color
3) #font stroke
image = cv2.putText(image, "In Possession: {}".format(txt), (100, 120), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,255), 4)
#print possesso palla delle squadre:
image = cv2.putText(image, "Ball possession (sec/tot)", (100, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
elapsed = round(frame_id / fps, 1)
#arbitri
image = cv2.putText(image, " Referee: {}/{} s".format(round(self.possesso_palla[0] / fps, 1), elapsed), (100, 200+(80 * 1)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
#Team 1
image = cv2.putText(image, " Team 1: {}/{} s".format(round(self.possesso_palla[1] / fps, 1), elapsed), (100, 200 + (80 * 2)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
#Team 2
image = cv2.putText(image, " Team 2: {}/{} s".format(round(self.possesso_palla[2] / fps, 1), elapsed), (100, 200 + (80 * 3)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
return image
# Generazione statistica 2
def stat2(self,image,boxes_ball,line_points_arr):
#posizione palla metà campo DX o SX
if(len(boxes_ball) > 0) or (len(self.last_valid_ball) > 0):
if(len(boxes_ball) > 0): # a new valid ball position from the det+tracker
self.last_valid_ball = boxes_ball
else: #if the det+tracker doesn't find a ball use the last one position
boxes_ball = self.last_valid_ball
coor = boxes_ball[0]
line_points_arr = np.asarray(self.line_points)
p1 =[coor[0],coor[1]]
# Return -1 left, 0 on line, +1 right
ball_pos = ball_position(self.line_points[0], self.line_points[1], p1)
distance_ball_center = abs((np.cross(line_points_arr[1]-line_points_arr[0], p1-line_points_arr[0])) / np.linalg.norm(line_points_arr[1]-line_points_arr[0]))
self.history_distance_ball_center.append(distance_ball_center * ball_pos)
#print("Distance: {}".format(distance_ball_center))
self.ballDX = (ball_pos == 1)
self.ballSX = (ball_pos == -1)
if ball_pos == 1:
self.ball_cumulative_position[0] = self.ball_cumulative_position[0] + 1
image = cv2.putText(image, "Ball position: DX", (100, 200 + (80 * 4)), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
else:
self.ball_cumulative_position[1] = self.ball_cumulative_position[1] +1
image = cv2.putText(image, "Ball position: SX", (100, 200 + (80 * 4)), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
else:
image = cv2.putText(image, "Ball position: -", (100, 200 + (80 * 4)), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
return image
# Generazione statistica 4
def stat4(self,image,boxes_ball,boxes_team,team_numbers):
if(len(boxes_ball) > 0):
attacco = False
ball_team1_distance = []
ball_team2_distance = []
number_of_value = 10 #number of value for mean
distance_search = 250 #how far i must search for a crowded frame
for i, box in enumerate(boxes_team):
if int(team_numbers[i]) == 1 :
ball_team1_distance.append(distance_boxes(box,boxes_ball[0]))
if int(team_numbers[i]) == 2 :
ball_team2_distance.append(distance_boxes(box,boxes_ball[0]))
self.history_mean_dist_team1.append(np.mean(ball_team1_distance))
self.history_mean_dist_team2.append(np.mean(ball_team2_distance))
# with the history of all the players near the ball find the contropiede
if len(self.history_mean_dist_team1) > distance_search:
#media giocatori vicini alla palla per ogni squadra negli ultimi 5 frame
mean_team1 = np.mean(self.history_mean_dist_team1[-number_of_value:])
mean_team2 = np.mean(self.history_mean_dist_team2[-number_of_value:])
#image = cv2.putText(image, "media: {}".format((mean_team1 + mean_team2) / 2), (100, 120), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,255), 4)
if (mean_team1 + mean_team2) / 2 > 400:
#print("poco affollato: mean:" +str((mean_team1+mean_team2)/2))
last_50_dist_team1 = self.history_mean_dist_team1[-distance_search:-number_of_value]
last_50_dist_team2 = self.history_mean_dist_team2[-distance_search:-number_of_value]
frame_crowded = 0
for i in range(len(last_50_dist_team1)):
#verifica se in una posizione passata intorno alla palla c'erano alemeno 6 giocatori
if((last_50_dist_team1[i] + last_50_dist_team2[i]) / 2) < 300:
frame_crowded += 1
if frame_crowded > number_of_value and (self.filtered_team_number != 2 or self.filtered_team_number != 1):
attacco = True
#print("number of frame crowded befor a single player action: "+str(frame_crowded))
#print(np.gradient(history_distance_ball_center[-80:]))
direction = np.mean(np.gradient(self.history_distance_ball_center[-80:]))
#print("Gradient: {}".format(direction))
(H, W) = image.shape[:2]
image = cv2.rectangle(image, (int((W/2)-200), 50), (int((W/2)+200), 300), (0,0,0), -1)
#image = cv2.rectangle(image, (int((W/2)-200), 50), (int((W/2)+200), 300), (150, 50, 50), 5)
cv2.putText(image,"Direction of Attack: ", (int((W/2)-150), 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
if direction > 0:
# print("attacco a DX")
cv2.arrowedLine(image, (int((W/2)), 200), (int((W/2))+150, 200), (200,200,200), 8, tipLength=0.5)
if direction < 0:
#print("attacco a SX")
cv2.arrowedLine(image, (int((W/2)), 200), (int((W/2)-150), 200), (200,200,200), 8,tipLength=0.5)
return image
# Generazione statistica 5
def stat5(self,image):
#ricera zona affollata
number_of_value = 10 #number of value for mean
distance_search = 250 #how far i must search for a crowded frame
(H, W) = image.shape[:2]
mean_team1 = np.mean(self.history_mean_dist_team1[-number_of_value:])
mean_team2 = np.mean(self.history_mean_dist_team2[-number_of_value:])
image = cv2.putText(image, "Opponent pressure", (100, 200 + (80 * 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
if (mean_team1 + mean_team2) / 2 < 500:
# print("affollato")
if self.ballSX :
#print("affollamento a SX")
self.pressione[0] += 1
if self.ballDX:
#print("affollamento dx")
self.pressione[1] += 1
if np.sum(self.pressione) > 0:
image = cv2.putText(image, " Team 1: {}%".format(str(int(self.pressione[1] / np.sum(self.pressione) * 100))), (100, 200 + (80 * 6)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
image = cv2.putText(image, " Team 2: {}%".format(str(int(self.pressione[0] / np.sum(self.pressione) * 100))), (100, 200 + (80 * 7)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
return image
# Pressione v2
def stat_pressione(self,image,boxes_ball,boxes_team,team_numbers):
image = cv2.putText(image, "Attacking pressure (%)", (100, 200 + (80 * 5)), cv2.FONT_HERSHEY_SIMPLEX, 1.1, (200,200,200), 4)
means_p = 10
line_points_arr = np.asarray(self.line_points)
t1_boxes = []
t2_boxes = []
# Possesso alle squadre
if self.possession > 0:
for i, box in enumerate(boxes_team):
if int(team_numbers[i]) == 1:
t1_boxes.append(box)
elif int(team_numbers[i]) == 2:
t2_boxes.append(box)
# Calcolo baricentro (centroidi) squadre
if len(t1_boxes) > 0 and len(t2_boxes) > 0:
centroid_t1 = bbox_centroid(t1_boxes)
self.past_centroid_t1.append(centroid_t1)
centroid_t2 = bbox_centroid(t2_boxes)
self.past_centroid_t2.append(centroid_t2)
if self.frame > means_p and len(self.past_centroid_t1) > 0:
# Media sugli ultimi 10 centroidi
m_centroid_t1 = np.mean(self.past_centroid_t1[-means_p:], axis=0).astype(int)
m_centroid_t2 = np.mean(self.past_centroid_t2[-means_p:], axis=0).astype(int)
# Distanza line di metà campo e centroidi
dist_t1_line = abs((np.cross(line_points_arr[1]-line_points_arr[0], m_centroid_t1-line_points_arr[0])) / np.linalg.norm(line_points_arr[1]-line_points_arr[0]))
dist_t2_line = abs((np.cross(line_points_arr[1]-line_points_arr[0], m_centroid_t2-line_points_arr[0])) / np.linalg.norm(line_points_arr[1]-line_points_arr[0]))
#print(dist_t1_line)
# Se la distanza tra le due squadre (centroidi) è minore di 300
if np.linalg.norm(m_centroid_t1 - m_centroid_t2) < 300:
if m_centroid_t1[0] > m_centroid_t2[0] and dist_t1_line > 550 and self.ballDX:
self.pressione[1] += 1
elif m_centroid_t1[0] < m_centroid_t2[0] and dist_t2_line > 550 and self.ballSX:
self.pressione[0] += 1
draw_poly(image, t1_boxes, (60,60,60))
draw_poly(image, t2_boxes, (200,200,200))
image = cv2.circle(image, (m_centroid_t1[0], m_centroid_t1[1]), 25, (60, 60, 60), -1)
image = cv2.circle(image, (m_centroid_t2[0], m_centroid_t2[1]), 25, (200, 200, 200), -1)
if np.sum(self.pressione) > 0:
image = cv2.putText(image, " Team 1: {}%".format(str(int(self.pressione[0] / np.sum(self.pressione) * 100))), (100, 200 + (80 * 6)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
image = cv2.putText(image, " Team 2: {}%".format(str(int(self.pressione[1] / np.sum(self.pressione) * 100))), (100, 200 + (80 * 7)), cv2.FONT_HERSHEY_SIMPLEX, 1, (200,200,200), 2)
return image
def run_stats(self,image,boxes_ball,boxes_team,team_numbers,fps,frame_id):
self.frame = frame_id
#Draw stats windows
image = cv2.rectangle(image, (50,50), (700, 100 + (80 * 9)), (0,0,0), -1)
#Draw pitch middle line
image = cv2.line(image, self.line_points[0], self.line_points[1], (20,20,20), thickness=2)
## Statistics call ##
# Chiamata statistica 1
image = self.stat1(image, boxes_ball, boxes_team, team_numbers, fps, frame_id)
# Chiamata statistica 2
image = self.stat2(image, boxes_ball, self.line_points)
# Chiamata statistica 4 (Attacco)
#image = self.stat4(image, boxes_ball, boxes_team, team_numbers)
# Chiamata statistica 5 (Vecchia Pressione)
#image = self.stat5(image)
# Calcolo pressione
image = self.stat_pressione(image, boxes_ball, boxes_team, team_numbers)
return image
def run_all(video_path, ball_tracking_path, team_detection_path, out_txt_file):
ball_dict = get_dict(ball_tracking_path)
team_dict = get_dict(team_detection_path)
# Input video
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
# Output video
fourcc = cv2.VideoWriter_fourcc('m','p','4','v') #definisco formato output video mp4
out = cv2.VideoWriter('output-finale.mp4',fourcc, 25.0, (int(video.get(3)), int(video.get(4))), True) #definisco proprietà output video
if not video.isOpened():
print ("Could not open video")
sys.exit()
stat = Statistics()
ret, img = video.read()
stat.initialize(img, 1)
ret = True
frame_id = 1
while ret:
ret, frame = video.read()
if not ret:
continue
image = frame
#estrazione boxes teams e palla dai rispettivi dataset
boxes_team, scores_team, names_team, team_numbers = [[0,0,0,0]], [[0]], [[0]], [[0]]
boxes_team,scores_team,names_team, complete_team, team_numbers = get_gt(frame,frame_id,team_dict)
boxes_ball, scores_ball, names_ball, not_used= [[0,0,0,0]], [[0]], [[0]], [[0]]
boxes_ball,scores_ball,names_ball, complete_ball, not_used = get_gt(frame,frame_id,ball_dict)
image = draw_players(image,boxes_team,team_numbers)
if len(boxes_ball) > 0:
coor = boxes_ball[0] #nel caso della palla il detector ritorna solo 1 detection ogni volta
draw_rect(image, coor, (10,255,255))
stat.run_stats(image, boxes_ball, boxes_team, team_numbers, fps, frame_id)
image_to_show = cv2.resize(image, (1920, 1080))
cv2.imshow("image",image_to_show)
cv2.waitKey(1)
(H, W) = image.shape[:2]
i = cv2.resize(image, (int(W), int(H)))
out.write(i)
frame_id+=1
out.release()
#output file for statistics
try:
os.remove(out_txt_file)
except :
None
f = open(out_txt_file, "a")
stat.generate_file(f, frame_id)
f.close()
############################################################
# Main statistics
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='')
parser.add_argument('--det_teams', required=True,
metavar="/path/to/balloon/dataset/",
help='Path to detections file of the team')
parser.add_argument('--ball_track', required=True,
metavar="/path/to/balloon/dataset/",
help='Path to track of the ball')
parser.add_argument('--video', required=True,
metavar="path or URL to video",
help='Video to apply the tracking on')
parser.add_argument('--out_stats', required=True,
metavar="path of output tracker file",
help='path of output tracker file')
args = parser.parse_args()
print("Video: ", args.video)
print("Detections: ", args.det_teams)
print("Ball_track: ", args.ball_track)
print("out: ", args.out_stats)
#stats(args.video, args.ball_track, args.det_teams, args.out_stats)
run_all(args.video, args.ball_track, args.det_teams, args.out_stats)