-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathtext_to_image_lora_switching.py
176 lines (155 loc) · 5.65 KB
/
text_to_image_lora_switching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
python3 onediff_diffusers_extensions/examples/text_to_image_lora_switching.py \
--base stabilityai/stable-diffusion-xl-base-1.0 \
--loras \
/data/home/wangyi/models/lora/Cartoon_SDXL_V1.safetensors \
/data/home/wangyi/models/lora/pixel-art-xl.safetensors \
/data/home/wangyi/models/lora/SDXL-Emoji-Lora-r4.safetensors \
ostris/watercolor_style_lora_sdxl/watercolor_v1_sdxl.safetensors \
"""
from collections import defaultdict, OrderedDict
from matplotlib import pyplot as plt
from pathlib import Path
import argparse
import torch
from onediff.utils.import_utils import is_oneflow_available, is_nexfort_available
USE_ONEFLOW = is_oneflow_available()
USE_NEXFORT = is_nexfort_available()
from diffusers import StableDiffusionXLPipeline
from onediffx import compile_pipe
from onediffx.lora import load_and_fuse_lora, unfuse_lora
IMAGES = defaultdict(OrderedDict)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, default="a cat"
)
parser.add_argument(
"--base", type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
)
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--warmup", type=int, default=1)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--loras", type=str, nargs="+", default=())
cmd_args = parser.parse_args()
return cmd_args
args = parse_args()
pipe = StableDiffusionXLPipeline.from_pretrained(
args.base, variant="fp16", torch_dtype=torch.float16, safety_checker=None,
)
pipe = pipe.to("cuda")
# ---------- torch backend ----------
print("using torch backend")
for lora in args.loras:
print(f"using lora: {lora}")
torch.manual_seed(args.seed)
if Path(lora).exists():
pipe.load_lora_weights(lora)
else:
lora, weight_name = lora.rsplit("/", 1)
pipe.load_lora_weights(lora, weight_name=weight_name)
pipe.fuse_lora()
image = pipe(
args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
).images[0]
image.save(f"torch-{args.prompt}-of-lora-{Path(lora).stem}.png")
pipe.unfuse_lora(pipe)
pipe.unload_lora_weights()
IMAGES["torch"][Path(lora).stem] = image
# ---------- oneflow backend ----------
if USE_ONEFLOW:
print("using oneflow backend")
del pipe
torch.cuda.empty_cache()
pipe = StableDiffusionXLPipeline.from_pretrained(
args.base, variant="fp16", torch_dtype=torch.float16, safety_checker=None,
)
pipe = pipe.to("cuda")
pipe = compile_pipe(pipe, backend="oneflow")
for _ in range(args.warmup):
torch.manual_seed(args.seed)
images = pipe(
args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
).images
for lora in args.loras:
print(f"using lora: {lora}")
if Path(lora).exists():
load_and_fuse_lora(pipe, lora)
else:
lora, weight_name = lora.rsplit("/", 1)
load_and_fuse_lora(pipe, lora, weight_name=weight_name)
torch.manual_seed(args.seed)
image = pipe(
args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
).images[0]
image.save(f"oneflow-{args.prompt}-of-lora-{Path(lora).stem}.png")
unfuse_lora(pipe)
IMAGES["oneflow"][Path(lora).stem] = image
# ---------- nexfort backend ----------
if USE_NEXFORT:
print("using nexfort backend")
del pipe
torch.cuda.empty_cache()
if USE_ONEFLOW:
import oneflow as flow
flow.cuda.empty_cache()
nexfort_options = {
"mode": "cudagraphs:benchmark:max-autotune:low-precision:cache-all",
"memory_format": "channels_last",
"options": {
"inductor.optimize_linear_epilogue": False,
"overrides.conv_benchmark": True,
"overrides.matmul_allow_tf32": True,
},
}
pipe = StableDiffusionXLPipeline.from_pretrained(
args.base, variant="fp16", torch_dtype=torch.float16, safety_checker=None,
)
pipe = pipe.to("cuda")
pipe = compile_pipe(pipe, backend="nexfort", options=nexfort_options)
for _ in range(args.warmup):
torch.manual_seed(args.seed)
images = pipe(
args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
).images
for lora in args.loras:
print(f"using lora: {lora}")
torch.manual_seed(args.seed)
if Path(lora).exists():
load_and_fuse_lora(pipe, lora)
else:
lora, weight_name = lora.rsplit("/", 1)
load_and_fuse_lora(pipe, lora, weight_name=weight_name)
image = pipe(
args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
).images[0]
image.save(f"nexfort-{args.prompt}-of-lora-{Path(lora).stem}.png")
unfuse_lora(pipe)
IMAGES["nexfort"][Path(lora).stem] = image
fig, axs = plt.subplots(len(args.loras), 3, figsize=(10, 10))
for i, (backend, images) in enumerate(IMAGES.items()):
for j, (lora, image) in enumerate(images.items()):
axs[j, i].imshow(image)
axs[j, i].axis("off")
column_titles = ["torch", "OneDiff (oneflow)", "OneDiff (nexfort)"]
for col in range(3):
axs[0, col].set_title(column_titles[col])
plt.tight_layout(rect=[0.1, 0, 1, 1])
plt.savefig("onediff_lora_switching.png")