-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtmp.json
129 lines (129 loc) · 10.8 KB
/
tmp.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
{
"success": true,
"response": {
"usage": {
"total_tokens": 1971,
"prompt_tokens": 1800,
"completion_tokens_details": { "reasoning_tokens": 0 },
"completion_tokens": 171
},
"system_fingerprint": "fp_25624ae3a5",
"object": "chat.completion",
"model": "gpt-4o-2024-05-13",
"id": "chatcmpl-A7usVVTPTdvDcYEYWC4ta5xp5GvzF",
"created": 1726450299,
"choices": [
{
"message": {
"role": "assistant",
"refusal": null,
"content": "¬Set.Finite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 0,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 1,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 2,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Set.Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 3,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 4,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Set.Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 5,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Set.Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 6,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "∀ (n : ℕ), ∃ m > n, m % 2 = 1"
},
"logprobs": null,
"index": 7,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "Set.Infinite {n : ℕ | n % 2 = 1}"
},
"logprobs": null,
"index": 8,
"finish_reason": "stop"
},
{
"message": {
"role": "assistant",
"refusal": null,
"content": "∀ (n : ℕ), ∃ m > n, m % 2 = 1"
},
"logprobs": null,
"index": 9,
"finish_reason": "stop"
}
]
},
"query": {
"url": "https://api.openai.com/v1/chat/completions",
"data": "{\"temperature\": 0.8,\n \"n\": 10,\n \"model\": \"gpt-4o\",\n \"messages\":\n [{\"role\": \"system\",\n \"content\":\n \"You are a Mathematics, Lean 4 and coding assistant who answers questions about Mathematics and Lean 4, gives hints while coding in Lean 4. You also translates from natural language to Lean Theorem Prover code and vice versa when asked. Follow EXACTLY any examples given when generating Lean code.\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: The set of prime natural numbers is infinite.\\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\", \"content\": \"{p | p.Prime}.Infinite\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: An ordinal lifted to the zero universe equals itself. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"∀ (a : Ordinal.{u}), Ordinal.lift.{0, u} a = a\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Two natural numbers are equal if and only if they have the same multiples. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"∀ {m n : ℕ}, (∀ (a : ℕ), m ∣ a ↔ n ∣ a) ↔ m = n\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: In a finite field of odd characteristic, not every element is a square. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {F : Type u_3} [inst : Field F] [inst_1 : Finite F], ringChar F ≠ 2 → ∃ a, ¬IsSquare a\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: The only numbers with empty prime factorization are `0` and `1` \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"∀ (n : ℕ), Nat.factorization n = 0 ↔ n = 0 ∨ n = 1\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Ordinals that are cardinals are unbounded. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"Set.Unbounded (fun x x_1 => x < x_1) {b | Cardinal.ord (Ordinal.card b) = b}\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: The terms of the sequence are nonzero. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ (K : Type u_1) [inst : Field K] [inst_1 : NumberField K] (w₁ : NumberField.InfinitePlace K) {B : ℕ}\\n (hB : NumberField.mixedEmbedding.minkowskiBound K < NumberField.mixedEmbedding.convexBodyLTFactor K * ↑B) (n : ℕ),\\n ↑↑(NumberField.Units.dirichletUnitTheorem.seq K w₁ hB n) ≠ 0\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: No zero divisors. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {α : Type u_2} [self : CanonicallyOrderedCommSemiring α] {a b : α}, a * b = 0 → a = 0 ∨ b = 0\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: The sum over the reciprocals of the primes diverges. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"¬Summable (Set.indicator {p | Nat.Prime p} fun n => 1 / ↑n)\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Every finite convergent corresponds to a rational number. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {K : Type u_1} [inst : LinearOrderedField K] [inst_1 : FloorRing K] (v : K) (n : ℕ),\\n ∃ q, GeneralizedContinuedFraction.convergents (GeneralizedContinuedFraction.of v) n = ↑q\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: The order of the `0` power series is infinite.\\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"∀ {R : Type u_1} [inst : Semiring R], PowerSeries.order 0 = ⊤\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: There is a finite base \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {α : Type u_1} {M : Matroid α} [self : Matroid.FiniteRk M], ∃ B, M.Base B ∧ Set.Finite B\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: A natural number is odd iff it has residue `1` or `3` mod `4`\\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\": \"∀ {n : ℕ}, n % 2 = 1 ↔ n % 4 = 1 ∨ n % 4 = 3\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Infinitely many natural numbers are equal to `d` mod `n`. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {n : ℕ}, n ≠ 0 → ∀ (d : ℕ), ∃ᶠ (m : ℕ) in Filter.atTop, m ≡ d [MOD n]\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Infinite ordinals that are cardinals are unbounded. \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"Set.Unbounded (fun x x_1 => x < x_1) {b | Cardinal.ord (Ordinal.card b) = b ∧ Ordinal.omega ≤ b}\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: There are finitely many subsets of a given finite set \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {α : Type u} {a : Set α}, Set.Finite a → Set.Finite {b | b ⊆ a}\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: A product of finite numbers is still finite \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {ι : Type u_1} {R : Type u_8} [inst : CommMonoidWithZero R] [inst_1 : NoZeroDivisors R] [inst_2 : Nontrivial R]\\n [inst_3 : DecidableEq R] [inst_4 : LT R] {s : Finset ι} {f : ι → WithTop R},\\n (∀ i ∈ s, f i ≠ ⊤) → (Finset.prod s fun i => f i) < ⊤\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: Every nonzero natural number has a unique prime factorization \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\", \"content\": \"Set.InjOn Nat.factorization {x | x ≠ 0}\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: A sum of finite numbers is still finite \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {α : Type u_1} {s : Finset α} {f : α → ENNReal}, (∀ a ∈ s, f a ≠ ⊤) → (Finset.sum s fun a => f a) < ⊤\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: There is an infinite base \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {α : Type u_1} {M : Matroid α} [self : Matroid.InfiniteRk M], ∃ B, M.Base B ∧ Set.Infinite B\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: A sum of numbers is infinite iff one of them is infinite \\n\\nGive ONLY the Lean code\"},\n {\"role\": \"assistant\",\n \"content\":\n \"∀ {ι : Type u_1} {M : Type u_4} [inst : AddCommMonoid M] {s : Finset ι} {f : ι → WithTop M},\\n (Finset.sum s fun i => f i) = ⊤ ↔ ∃ i ∈ s, f i = ⊤\"},\n {\"role\": \"user\",\n \"content\":\n \"Translate the following statement into Lean 4:\\n## Theorem: There are infinitely many odd numbers\\n\\nGive ONLY the Lean code\"}],\n \"max_tokens\": 1600}",
"arguments": [
"https://api.openai.com/v1/chat/completions",
"-X",
"POST",
"-H",
"Content-Type: application/json"
]
}
}