-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathamodel.py
271 lines (229 loc) · 11.3 KB
/
amodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
import os
from keras.regularizers import l2
from keras.callbacks import *
# from visualizer import *
from keras.models import *
from keras.optimizers import *
from keras.utils.np_utils import to_categorical, accuracy
from keras.layers.core import *
from keras.layers import Input, Embedding, LSTM, Dense, merge, TimeDistributed
# from keras.utils.visualize_util import plot # THIS IS BAD
# from data_reader import *
from reader import *
from myutils import *
import logging
from datetime import datetime
# from myconfig import DATAPATH,MYPATH
def get_params():
parser = argparse.ArgumentParser(description='Short sample app')
parser.add_argument('-lstm', action="store", default=150, dest="lstm_units", type=int)
parser.add_argument('-epochs', action="store", default=20, dest="epochs", type=int)
parser.add_argument('-batch', action="store", default=32, dest="batch_size", type=int)
parser.add_argument('-emb', action="store", default=100, dest="emb", type=int)
parser.add_argument('-xmaxlen', action="store", default=20, dest="xmaxlen", type=int)
parser.add_argument('-ymaxlen', action="store", default=20, dest="ymaxlen", type=int)
parser.add_argument('-maxfeat', action="store", default=35000, dest="max_features", type=int)
parser.add_argument('-classes', action="store", default=351, dest="num_classes", type=int)
parser.add_argument('-sample', action="store", default=1, dest="samples", type=int)
parser.add_argument('-nopad', action="store", default=False, dest="no_padding", type=bool)
parser.add_argument('-lr', action="store", default=0.001, dest="lr", type=float)
parser.add_argument('-load', action="store", default=False, dest="load_save", type=bool)
parser.add_argument('-verbose', action="store", default=False, dest="verbose", type=bool)
parser.add_argument('-train', action="store", default="train_all.txt", dest="train")
parser.add_argument('-test', action="store", default="test_all.txt", dest="test")
parser.add_argument('-dev', action="store", default="dev.txt", dest="dev")
opts = parser.parse_args(sys.argv[1:])
print "lstm_units", opts.lstm_units
print "epochs", opts.epochs
print "batch_size", opts.batch_size
print "emb", opts.emb
print "samples", opts.samples
print "xmaxlen", opts.xmaxlen
print "ymaxlen", opts.ymaxlen
print "max_features", opts.max_features
print "no_padding", opts.no_padding
return opts
class AccCallBack(Callback):
def __init__(self, xtrain, ytrain, xdev, ydev, xtest, ytest, vocab, opts):
self.xtrain = xtrain
self.ytrain = ytrain
self.xdev = xdev
self.ydev = ydev
self.xtest = xtest
self.ytest = ytest
self.vocab = vocab
self.opts = opts
def on_epoch_end(self, epoch, logs={}):
train_acc = compute_acc(self.xtrain, self.ytrain, self.vocab, self.model, self.opts)
dev_acc = compute_acc(self.xdev, self.ydev, self.vocab, self.model, self.opts)
test_acc = compute_acc(self.xtest, self.ytest, self.vocab, self.model, self.opts)
logging.info('----------------------------------')
logging.info('Epoch ' + str(epoch) + ' train loss:' + str(logs.get('loss')) + ' - Validation loss: ' + str(
logs.get('val_loss')) + ' train acc: ' + str(train_acc[0]) + '/' + str(train_acc[1]) + ' dev acc: ' + str(
dev_acc[0]) + '/' + str(dev_acc[1]) + ' test acc: ' + str(test_acc[0]) + '/' + str(test_acc[1]))
logging.info('----------------------------------')
def get_H_n(X):
ans = X[:, -1, :] # get last element from time dim
return ans
def get_Y(X, xmaxlen):
return X[:, :xmaxlen, :] # get first xmaxlen elem from time dim
def get_R(X):
Y, alpha = X[0], X[1]
ans = K.T.batched_dot(Y, alpha)
return ans
def build_model(opts, verbose=False):
k = 2 * opts.lstm_units # 300
L = opts.xmaxlen # 20
N = opts.xmaxlen + opts.ymaxlen + 1 # for delim
print "x len", L, "total len", N
print "k", k, "L", L
main_input = Input(shape=(N,), dtype='int32', name='main_input')
x = Embedding(output_dim=opts.emb, input_dim=opts.max_features, input_length=N, name='x')(main_input)
drop_out = Dropout(0.1, name='dropout')(x)
lstm_fwd = LSTM(opts.lstm_units, return_sequences=True, name='lstm_fwd')(drop_out)
lstm_bwd = LSTM(opts.lstm_units, return_sequences=True, go_backwards=True, name='lstm_bwd')(drop_out)
bilstm = merge([lstm_fwd, lstm_bwd], name='bilstm', mode='concat')
drop_out = Dropout(0.1)(bilstm)
h_n = Lambda(get_H_n, output_shape=(k,), name="h_n")(drop_out)
Y = Lambda(get_Y, arguments={"xmaxlen": L}, name="Y", output_shape=(L, k))(drop_out)
Whn = Dense(k, W_regularizer=l2(0.01), name="Wh_n")(h_n)
Whn_x_e = RepeatVector(L, name="Wh_n_x_e")(Whn)
WY = TimeDistributed(Dense(k, W_regularizer=l2(0.01)), name="WY")(Y)
merged = merge([Whn_x_e, WY], name="merged", mode='sum')
M = Activation('tanh', name="M")(merged)
alpha_ = TimeDistributed(Dense(1, activation='linear'), name="alpha_")(M)
flat_alpha = Flatten(name="flat_alpha")(alpha_)
alpha = Dense(L, activation='softmax', name="alpha")(flat_alpha)
Y_trans = Permute((2, 1), name="y_trans")(Y) # of shape (None,300,20)
r_ = merge([Y_trans, alpha], output_shape=(k, 1), name="r_", mode=get_R)
r = Reshape((k,), name="r")(r_)
Wr = Dense(k, W_regularizer=l2(0.01))(r)
Wh = Dense(k, W_regularizer=l2(0.01))(h_n)
merged = merge([Wr, Wh], mode='sum')
h_star = Activation('tanh')(merged)
out = Dense(3, activation='softmax')(h_star)
output = out
model = Model(input=[main_input], output=output)
if verbose:
model.summary()
# plot(model, 'model.png')
# # model.compile(loss={'output':'binary_crossentropy'}, optimizer=Adam())
# model.compile(loss={'output':'categorical_crossentropy'}, optimizer=Adam(options.lr))
model.compile(loss='categorical_crossentropy',optimizer=Adam(options.lr))
return model
def compute_acc(X, Y, vocab, model, opts):
scores = model.predict(X, batch_size=options.batch_size)
prediction = np.zeros(scores.shape)
for i in range(scores.shape[0]):
l = np.argmax(scores[i])
prediction[i][l] = 1.0
assert np.array_equal(np.ones(prediction.shape[0]), np.sum(prediction, axis=1))
plabels = np.argmax(prediction, axis=1)
tlabels = np.argmax(Y, axis=1)
acc = accuracy(tlabels, plabels)
return acc, acc
def getConfig(opts):
conf = [opts.xmaxlen,
opts.ymaxlen,
opts.batch_size,
opts.emb,
opts.lr,
opts.samples,
opts.lstm_units,
opts.epochs]
if opts.no_padding:
conf.append("no-pad")
return "_".join(map(lambda x: str(x), conf))
def save_model(model, wtpath, archpath, mode='yaml'):
if mode == 'yaml':
yaml_string = model.to_yaml()
open(archpath, 'w').write(yaml_string)
else:
with open(archpath, 'w') as f:
f.write(model.to_json())
model.save_weights(wtpath)
def load_model(wtpath, archpath, mode='yaml'):
if mode == 'yaml':
model = model_from_yaml(open(archpath).read()) # ,custom_objects={"MyEmbedding": MyEmbedding})
else:
with open(archpath) as f:
model = model_from_json(f.read()) # , custom_objects={"MyEmbedding": MyEmbedding})
model.load_weights(wtpath)
return model
def concat_in_out(X, Y, vocab):
numex = X.shape[0] # num examples
glue = vocab["delimiter"] * np.ones(numex).reshape(numex, 1)
inp_train = np.concatenate((X, glue, Y), axis=1)
return inp_train
def setup_logger(config_str):
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M',
filename=datetime.now().strftime('mylogfile_%H_%M_%d_%m_%Y.log'),
filemode='w')
if __name__ == "__main__":
options = get_params()
train = [l.strip().split('\t') for l in open(options.train)]
dev = [l.strip().split('\t') for l in open(options.dev)]
test = [l.strip().split('\t') for l in open(options.test)]
vocab = get_vocab(train)
print "vocab (incr. maxfeatures accordingly):",len(vocab)
X_train,Y_train,Z_train=load_data(train,vocab)
X_dev,Y_dev,Z_dev=load_data(dev,vocab)
X_test,Y_test,Z_test=load_data(test,vocab)
print 'Build model...'
model = build_model(options)
config_str = getConfig(options)
MODEL_ARCH = "arch_att" + config_str + ".yaml"
MODEL_WGHT = "weights_att" + config_str + ".weights"
MAXLEN = options.xmaxlen
X_train = pad_sequences(X_train, maxlen=MAXLEN, value=vocab["unk"], padding='pre')
X_dev = pad_sequences(X_dev, maxlen=MAXLEN, value=vocab["unk"], padding='pre')
X_test = pad_sequences(X_test, maxlen=MAXLEN, value=vocab["unk"], padding='pre')
Y_train = pad_sequences(Y_train, maxlen=MAXLEN, value=vocab["unk"], padding='post')
Y_dev = pad_sequences(Y_dev, maxlen=MAXLEN, value=vocab["unk"], padding='post')
Y_test = pad_sequences(Y_test, maxlen=MAXLEN, value=vocab["unk"], padding='post')
net_train = concat_in_out(X_train, Y_train, vocab)
net_dev = concat_in_out(X_dev, Y_dev, vocab)
net_test = concat_in_out(X_test, Y_test, vocab)
Z_train = to_categorical(Z_train, nb_classes=3)
Z_dev = to_categorical(Z_dev, nb_classes=3)
Z_test = to_categorical(Z_test, nb_classes=3)
print X_train.shape, Y_train.shape, net_train.shape
print map_to_txt(net_train[0], vocab), Z_train[0]
print map_to_txt(net_train[1], vocab), Z_train[1]
setup_logger(config_str)
assert net_train[0][options.xmaxlen] == 1
train_dict = {'input': net_train, 'output': Z_train}
dev_dict = {'input': net_dev, 'output': Z_dev}
print 'Build model...'
model = build_model(options)
logging.info(vars(options))
logging.info(
"train size: " + str(len(net_train)) + " dev size: " + str(len(net_dev)) + " test size: " + str(len(net_test)))
if options.load_save and os.path.exists(MODEL_ARCH) and os.path.exists(MODEL_WGHT):
print("Loading pre-trained model from", MODEL_WGHT)
load_model(MODEL_WGHT, MODEL_ARCH, 'json')
train_acc = compute_acc(net_train, Z_train, vocab, model, options)
dev_acc = compute_acc(net_dev, Z_dev, vocab, model, options)
test_acc = compute_acc(net_test, Z_test, vocab, model, options)
print train_acc, dev_acc, test_acc
else:
# history = model.fit(train_dict,
# batch_size=options.batch_size,
# nb_epoch=options.epochs,
# validation_data=dev_dict,
# callbacks=[
# AccCallBack(net_train, Z_train, net_dev, Z_dev, net_test, Z_test, vocab, options)]
# )
history = model.fit(net_train,Z_train,
batch_size=options.batch_size,
nb_epoch=options.epochs,
validation_data=(net_dev,Z_dev),
callbacks=[
AccCallBack(net_train, Z_train, net_dev, Z_dev, net_test, Z_test, vocab, options)]
)
save_model(model, MODEL_WGHT, MODEL_ARCH)