-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSentiment Analysis.py
138 lines (108 loc) · 3.95 KB
/
Sentiment Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 23 12:03:03 2017
"""
import tweepy
import csv
import pandas as pd
import matplotlib.pylab as plt
from textblob import TextBlob
import numpy as np
import matplotlib.dates as mdates
import string
import re
#input your credentials here
# keys and tokens from the Twitter Dev Console
consumer_key = "*****"
consumer_secret = "****"
access_token = "****"
access_token_secret = "****"
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth,wait_on_rate_limit=True)
# Truncate any already existing file
csvFile = open('Checking.csv', "w+")
csvFile.close()
# Open/Create a file to append data
csvFile = open('Checking.csv', 'a')
#Use csv Writer
csvWriter = csv.writer(csvFile)
query = raw_input("Enter your search item:")
csvWriter.writerow(['Created','Text','Retweet Count'])
def remove_punct(text):
text=str(text)
text = "".join([char for char in text if char not in string.punctuation])
text = re.sub('([0-9]+)|(https?://\S+)|(#\S+)', '', text)
return text
for tweet in tweepy.Cursor(api.search,
q=query,
count=5,
result_type="recent",
include_entities=True,
lang="en").items(5000):
csvWriter.writerow([tweet.created_at, remove_punct(tweet.text.encode('utf-8')),tweet.retweet_count])
csvFile.close()
dataframe = pd.read_csv("Checking.csv")
dataframe['Sentiment']= 0
dataframe['Score']=0.0
for i,row in dataframe.iterrows():
sent = TextBlob(row['Text'])
dataframe.loc[i, 'Score'] = sent.sentiment.polarity
if sent.sentiment.polarity > 0:
dataframe.loc[i, 'Sentiment'] = 1
elif sent.sentiment.polarity < 0:
dataframe.loc[i, 'Sentiment'] = -1
stats=dataframe['Sentiment'].value_counts()
stats_n=dataframe['Sentiment'].value_counts(normalize=True)
obj= ('Neutral','Possitive','Negative')
y_pos = np.arange(len(obj))
plt.bar(y_pos, stats, align='center', alpha=0.75)
plt.xticks(y_pos, obj)
plt.xlabel('Sentiment',fontsize=12)
plt.ylabel('Frequency',fontsize=12)
plt.title('Sentiment Analysis',fontsize=14)
plt.show()
print "Showing percentage of the nature of the tweets:"
print "Neutral Tweets:","%.2f"%(100*stats_n[0]),"%"
print "Possitive Tweets:","%.2f"%(100*stats_n[1]),"%"
print "Negative Tweets:","%.2f"%(100*stats_n[-1]),"%"
dataframe.index = pd.to_datetime(dataframe['Created'])
ax= dataframe['Score'].plot()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d/%m/%Y ,%H:%M'))
ax.set_title("Sentiment Score v/s Time",fontsize=14)
ax.set_xlabel("Created",fontsize=12)
ax.set_ylabel("Sentiment Score",fontsize=12)
plt.show()
dataframe.index = dataframe['Unnamed: 0']
for i,row in dataframe.iterrows():
if row['Score']>0:
pt=plt.scatter(i,row['Score'],c='green')
elif row['Score']==0:
nu=plt.scatter(i,row['Score'],c='yellow')
else:
nt=plt.scatter(i,row['Score'],c='red')
plt.legend((pt,nu,nt),('Positive','Neutral','Negative'))
plt.title("Cluster",fontsize=14)
plt.xlabel("Tweets",fontsize=12)
plt.ylabel("Score",fontsize=12)
plt.show()
dataframe.index = pd.to_datetime(dataframe['Created'])
d = dataframe.groupby(pd.TimeGrouper(freq='D'))['Score'].count()
d = pd.DataFrame(d)
date = d['Score'].argmax()
date= date.strftime("%d-%m-%Y")
day=int(date[0:2])
d= dataframe[dataframe.index.day==day]
new= d.groupby(pd.TimeGrouper(freq='H'))['Score'].count()
new= pd.DataFrame(new)
ax=new.plot(kind='line',legend=False)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
ax.set_title("Hourly Tweets for "+ date,fontsize=14)
ax.set_xlabel("Time",fontsize=12)
ax.set_ylabel("Tweet Count",fontsize=12)
plt.show()
print "Most famous tweets are:"
maximum = max(dataframe['Retweet Count'])
for i,row in dataframe.iterrows():
if row['Retweet Count'] == maximum:
print row['Text']