Skip to content

Commit 5ea4f11

Browse files
committed
fix: dead URLs in docs
1 parent efc18c6 commit 5ea4f11

File tree

3 files changed

+9
-27
lines changed

3 files changed

+9
-27
lines changed

README.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -471,7 +471,7 @@ graphics::mtext(
471471
graphics::par(opar)
472472
```
473473

474-
Default color scheme for amino acid annotation is from [Residual colours: a proposal for aminochromography](https://academic.oup.com/peds/article/10/7/743/1593029?login=false):
474+
Default color scheme for amino acid annotation is from [Residual colours: a proposal for aminochromography](https://pubmed.ncbi.nlm.nih.gov/9342138/):
475475

476476
```{r aa_color_scheme, warning = FALSE, fig.height = 9, fig.width = 10, fig.align = "center"}
477477
aa_color <- c(
@@ -678,7 +678,7 @@ The Hi-C method maps chromosome contacts in eukaryotic cells.
678678
For this purpose, DNA and protein complexes are cross-linked and DNA fragments then purified.
679679
As a result, even distant chromatin fragments can be found to interact due to the spatial organization of the DNA and histones in the cell. Hi-C data shows these interactions for example as a contact map.
680680

681-
The Hi-C data is taken from [pyGenomeTracks: reproducible plots for multivariate genomic datasets](https://academic.oup.com/bioinformatics/article/37/3/422/5879987?login=false).
681+
The Hi-C data is taken from [pyGenomeTracks: reproducible plots for multivariate genomic datasets](https://pubmed.ncbi.nlm.nih.gov/32745185/).
682682

683683
The Hi-C matrix visualization is implemented by [`HiCBricks`](https://github.com/koustav-pal/HiCBricks).
684684
This package needs to be installed separately (it is only 'Suggested' by `ggcoverage`).
@@ -788,7 +788,7 @@ basic_coverage +
788788

789789
### Load coverage
790790

791-
The exported coverage from [Proteome Discoverer](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006021/):
791+
The exported coverage from [Proteome Discoverer](https://doi.org/10.3390/proteomes9010015):
792792

793793
```{r ms_coverage_data}
794794
library(openxlsx)

README.md

Lines changed: 3 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -337,9 +337,6 @@ library(ggbio)
337337
#>
338338
#> geom_bar, geom_rect, geom_segment, ggsave, stat_bin, stat_identity,
339339
#> xlim
340-
```
341-
342-
``` r
343340

344341
basic_coverage +
345342
geom_gene(gtf.gr = gtf_gr) +
@@ -459,9 +456,6 @@ library("BSgenome.Hsapiens.UCSC.hg19")
459456
#> The following object is masked from 'package:BiocIO':
460457
#>
461458
#> FileForFormat
462-
```
463-
464-
``` r
465459

466460
# create plot
467461
basic_coverage +
@@ -497,9 +491,6 @@ track_df <- LoadTrackFile(
497491
region = "4:1-160000000"
498492
)
499493
#> No metadata provided, returning coverage as is.
500-
```
501-
502-
``` r
503494

504495
# add chr prefix
505496
track_df$seqnames <- paste0("chr", track_df$seqnames)
@@ -606,9 +597,6 @@ track_df <- LoadTrackFile(
606597
#> No 'region' specified; extracting coverage for an example range
607598
#> (<=100,000 bases, first annotated sequence)
608599
#> Coverage extracted from sequence/chromosome: chr10
609-
```
610-
611-
``` r
612600

613601
head(track_df)
614602
#> seqnames start end width strand score Type Group
@@ -669,7 +657,7 @@ graphics::par(opar)
669657

670658
Default color scheme for amino acid annotation is from [Residual
671659
colours: a proposal for
672-
aminochromography](https://academic.oup.com/peds/article/10/7/743/1593029?login=false):
660+
aminochromography](https://doi.org/10.1093/protein/10.7.743):
673661

674662
``` r
675663
aa_color <- c(
@@ -910,7 +898,7 @@ a contact map.
910898

911899
The Hi-C data is taken from [pyGenomeTracks: reproducible plots for
912900
multivariate genomic
913-
datasets](https://academic.oup.com/bioinformatics/article/37/3/422/5879987?login=false).
901+
datasets](https://doi.org/10.1093/bioinformatics/btaa692).
914902

915903
The Hi-C matrix visualization is implemented by
916904
[`HiCBricks`](https://github.com/koustav-pal/HiCBricks). This package
@@ -931,9 +919,6 @@ track_df <- LoadTrackFile(
931919
extend = 0
932920
)
933921
#> No metadata provided, returning coverage as is.
934-
```
935-
936-
``` r
937922

938923
track_df$score <- ifelse(track_df$score < 0, 0, track_df$score)
939924

@@ -1021,9 +1006,6 @@ library(HiCBricks)
10211006
#> The following object is masked from 'package:Biostrings':
10221007
#>
10231008
#> pattern
1024-
```
1025-
1026-
``` r
10271009

10281010
basic_coverage +
10291011
geom_tad(
@@ -1066,7 +1048,7 @@ quality of the data.
10661048
### Load coverage
10671049

10681050
The exported coverage from [Proteome
1069-
Discoverer](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006021/):
1051+
Discoverer](https://doi.org/10.3390/proteomes9010015):
10701052

10711053
``` r
10721054
library(openxlsx)

vignettes/ggcoverage.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -500,7 +500,7 @@ graphics::mtext(
500500
graphics::par(opar)
501501
```
502502

503-
Default color scheme for amino acid annotation is from [Residual colours: a proposal for aminochromography](https://academic.oup.com/peds/article/10/7/743/1593029?login=false):
503+
Default color scheme for amino acid annotation is from [Residual colours: a proposal for aminochromography](https://pubmed.ncbi.nlm.nih.gov/9342138/):
504504

505505
```{r aa_color_scheme, warning = FALSE, fig.height = 9, fig.width = 10, fig.align = "center"}
506506
aa_color <- c(
@@ -705,7 +705,7 @@ The Hi-C method maps chromosome contacts in eukaryotic cells.
705705
For this purpose, DNA and protein complexes are cross-linked and DNA fragments then purified.
706706
As a result, even distant chromatin fragments can be found to interact due to the spatial organization of the DNA and histones in the cell. Hi-C data shows these interactions for example as a contact map.
707707

708-
The Hi-C data is taken from [pyGenomeTracks: reproducible plots for multivariate genomic datasets](https://academic.oup.com/bioinformatics/article/37/3/422/5879987?login=false).
708+
The Hi-C data is taken from [pyGenomeTracks: reproducible plots for multivariate genomic datasets](https://pubmed.ncbi.nlm.nih.gov/32745185/).
709709

710710
The Hi-C matrix visualization is implemented by [`HiCBricks`](https://github.com/koustav-pal/HiCBricks).
711711
This package needs to be installed separately (it is only 'Suggested' by `ggcoverage`).
@@ -819,7 +819,7 @@ knitr::include_graphics("../man/figures/README-hic_coverage-1.png")
819819

820820
### Load coverage
821821

822-
The exported coverage from [Proteome Discoverer](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006021/):
822+
The exported coverage from [Proteome Discoverer](https://pmc.ncbi.nlm.nih.gov/articles/PMC8006021/):
823823

824824
```{r ms_coverage_data, eval = FALSE}
825825
library(openxlsx)

0 commit comments

Comments
 (0)