-
Surrogate variable analysis
- Leek, J. T. & Storey, J. D. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genet 3, e161 (2007).
-
RNA-seq
- Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008-2017 (2012). Group: Anna Plantinga, Katie Wilson, Shih-Yu (Shirley) Chang (03/06/14)
- Frazee, A. C., Sabunciyan, S., Hansen, K. D., Irizarry, R. A. & Leek, J. T. Differential expression analysis of RNA-seq data at single-base resolution. Biostatistics kxt053 (2014). doi:10.1093/biostatistics/kxt053.
- Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-Seq data. BMC Bioinformatics 12, 480 (2011). Group: David Whitney, Jun Wung and Caitlin McHugh (3/06/14)
- Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009-1015 (2010). Group: Elisabeth Rosenthal and Xieting Zhang and Yu Yin (03/11/14)
- Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204-216 (2012).
- Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012). Group: Ravi Sood, David Scoville, Anna Engstrom and Yanfei Li (03/13/14)
-
eQTL/sQTL
- Zhao, K., Lu, Z.-X., Park, J. W., Zhou, Q. & Xing, Y. GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data. Genome Biol. 14, R74 (2013).
-
Single-cell gene-expression
- McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461-467 (2013).
- Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236-240 (2013).
-
Gene expression deconvolution
- Shen-Orr, S. S. et al. Cell type-specific gene expression differences in complex tissues. Nat. Methods 7, 287-289 (2010). Group: Jia Jin Kee and Ju Young Park (3/11/14)
-
ChIP-seq
- Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
-
Methylation
- Hansen, K. D., Langmead, B. & Irizarry, R. A. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. (2012).
- Saito, Y., Tsuji, J. & Mituyama, T. Bisulfighter: accurate detection of methylated cytosines and differentially methylated regions. Nucleic Acids Res. gkt1373 (2014). doi:10.1093/nar/gkt1373. Group: YuChi Chang and Travis, Kenneth Chen (03/11/14)
- Read and understand the paper
- Reproduce some of the analysis
- Summarize the paper with the analysis in reproducible presentation (a .Rpres file)
- Present your work to the rest of the class