forked from xuehy/HiFiFace-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhififace_agent.py
572 lines (489 loc) · 22.4 KB
/
hififace_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Copyright 2024 LiveKit, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import json
import logging
import os
import time
from typing import Optional
from configs.train_config import TrainConfig
from models.model import HifiFace
from benchmark.app_image import ImageSwap
import cv2
# import insightface
import numpy as np
# from insightface.app import FaceAnalysis
from livekit import agents, rtc
from livekit.plugins import deepgram
from openai import AsyncOpenAI
import argparse
INTRO_MESSAGE = """
Hi there! Welcome to the demo! Your conversation will be summarized here every minute!
"""
BYE_MESSAGE = """
Thanks for giving this a try! To keep testing, please reload the page and reconnect. Goodbye for now.
"""
_OUTPUT_HEIGHT = 320
_OUTPUT_WIDTH = 240
DET_DIM = 128
FPS_LIMIT = 8
NUM_SWAPPERS = 1
SUMMARIZATION_INT_SEC = 60
END_SESSION_AFTER_MIN = 35
DROP_MODEL_AFTER_NO_PARTICIPANTS_LEFT_SEC = 10
class DeepfakeSTT:
@classmethod
async def create(cls, ctx: agents.JobContext):
instance = DeepfakeSTT(ctx)
await instance.start()
def __init__(self, ctx: agents.JobContext):
self.ctx: agents.JobContext = ctx
# self.detector = FaceAnalysis(name="buffalo_l")
# self.swappers = [
# insightface.model_zoo.get_model(
# "inswapper_128.onnx", download=False, download_zip=False
# )
# for i in range(NUM_SWAPPERS)
# ]
class ConfigPath:
face_detector_weights = "/home/shijiez/data/hififace/face_detector_scrfd_10g_bnkps.onnx"
model_path = ""
model_idx = 80000
ffmpeg_device = "cuda"
device = "cuda"
cfg = ConfigPath()
parser = argparse.ArgumentParser(
prog="benchmark", description="Image Inference Script", epilog="Inference image swap"
)
parser.add_argument("-m", "--model_path", required=True, help="Path to the model checkpoint")
parser.add_argument("-i", "--model_idx", required=True, type=int, help="Model checkpoint index")
parser.add_argument("-s", "--source_image", required=True, help="Path to the source image")
parser.add_argument("-t", "--target_image", required=True, help="Path to the target image")
parser.add_argument("-o", "--output_image", required=True, help="Path to save the output image")
parser.add_argument("--shape_rate", default=1.0, type=float, help="Shape similarity rate")
parser.add_argument("--id_rate", default=1.0, type=float, help="ID similarity rate")
parser.add_argument("--iterations", default=1, type=int, help="Number of iterations")
args = parser.parse_args()
cfg.model_path = args.model_path
cfg.model_idx = args.model_idx
opt = TrainConfig()
checkpoint = (cfg.model_path, cfg.model_idx)
model = HifiFace(opt.identity_extractor_config, is_training=False, device=cfg.device, load_checkpoint=checkpoint)
image_infer = ImageSwap(cfg, model)
self.source_face = None
# self.source_face = None
self.video_out = rtc.VideoSource(_OUTPUT_WIDTH, _OUTPUT_HEIGHT)
self.latest_results = []
self.detecting = False
self.chat = rtc.ChatManager(ctx.room)
# STT
self.speaking_participants = {}
self.prompt: Optional[str] = None
self.transcribed_text = ""
self.last_sent_time = time.time()
# FPS
self.start_time = None
self.frame_count = 0
# logging.info(f"{NUM_SWAPPERS} swappers spawned.")
logging.info(f"fps limit: {FPS_LIMIT}")
# openai Summarization
self.summarizer = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
async def start(self):
def on_track_subscribed(
track: rtc.Track,
publication: rtc.TrackPublication,
participant: rtc.RemoteParticipant,
):
# agent subscribes to patient track:
if (
track.kind == rtc.TrackKind.KIND_VIDEO
and participant.metadata == "patient"
):
self.ctx.create_task(self.process_video_track(track))
elif track.kind == rtc.TrackKind.KIND_AUDIO:
self.ctx.create_task(self.audio_track_worker(track, participant.sid))
if isinstance(track, rtc.RemoteAudioTrack):
self.speaking_participants[participant.sid] = True
print(f"participant{str(self)}")
print(
f"Participant with ID '{participant.sid}' subscribed to audio track '{track.sid}'"
)
else:
# Handle other track types differently (optional)
print(f"Received unexpected track type: {type(track)}")
# take the source face for faceswap
image_path = "faces/em.jpeg"
# source_img = cv2.imread(image_path)
self.source_face = cv2.imread(image_path)
# self.source_face = np.asarray(self.source_face)
# source_face = np.asarray(source_face)
# target_face = np.asarray(target_face)
# self.detector.prepare(ctx_id=0, det_size=(DET_DIM, DET_DIM))
# self.source_face = self.detector.get(source_img)[0]
self.ctx.room.on("track_subscribed", on_track_subscribed)
video_track = rtc.LocalVideoTrack.create_video_track(
"agent-video", self.video_out
)
await self.ctx.room.local_participant.publish_track(video_track)
# Send an empty frame to initialize the video track
result = rtc.VideoFrame(
_OUTPUT_WIDTH,
_OUTPUT_HEIGHT,
rtc.VideoBufferType.ARGB,
bytearray(_OUTPUT_WIDTH * _OUTPUT_HEIGHT * 4),
)
self.video_out.capture_frame(result)
self.update_state("idle")
# give time for the subscriber to fully subscribe to the agent's tracks
await asyncio.sleep(1)
await self.chat.send_message(INTRO_MESSAGE)
self.ctx.create_task(self.end_session_after(END_SESSION_AFTER_MIN * 60))
self.ctx.room.on("participant_disconnected", self.on_participant_disconnected)
def on_participant_disconnected(self, event):
print("Participant disconnected")
participants_count = len(self.ctx.room.participants.keys())
print(participants_count)
# if participants_count == 0:
# del self.detector
# del self.swappers
# self.ctx.create_task(
# self.drop_model_after_participants_left(
# DROP_MODEL_AFTER_NO_PARTICIPANTS_LEFT_SEC
# )
# )
# # drop the model if nobody is connected to the room.
# async def drop_model_after_participants_left(self, interval: int = 1):
# while True:
# participants_count = len(self.ctx.room.participants.keys())
# if participants_count == 0:
# del self.detector
# del self.swappers
# await self.ctx.disconnect()
# return
# else:
# await asyncio.sleep(interval)
async def end_session_after(self, duration: int):
await asyncio.sleep(duration)
await self.chat.send_message(BYE_MESSAGE)
# del self.detector
# del self.swappers
self.update_state("idle")
await asyncio.sleep(5)
await self.ctx.disconnect()
async def audio_track_worker(self, track: rtc.Track, participant_id: str):
stt = deepgram.STT()
stt_stream = stt.stream()
audio_stream = rtc.AudioStream(track)
self.ctx.create_task(self.process_text_from_speech(stt_stream, participant_id))
async for audio_frame_event in audio_stream:
stt_stream.push_frame(audio_frame_event.frame)
await stt_stream.flush()
async def process_text_from_speech(self, stream, participant_id):
async for event in stream:
if not event.is_final:
# received a partial result, STT result be updated as confidence increases
continue
if event.alternatives:
# for alt in event.alternatives:
# print(alt.text)
first_alternative = event.alternatives[0]
recognized_text = first_alternative.text
if participant_id in self.ctx.room.participants:
speaking_participant_name = self.ctx.room.participants[
participant_id
].name
# for participant_id, is_speaking in self.speaking_participants.items():
# if is_speaking:
# speaking_participant = participant_id
# speaking_participant_name = self.ctx.room.participants[
# participant_id
# ].name
# # break
# print(speaking_participant_name)
# print("*"*20)
if len(recognized_text):
# await self.chat.send_message(
# speaking_participant_name + ": " + recognized_text
# )
self.transcribed_text += (
f"{speaking_participant_name}: {recognized_text}\n"
)
current_time = time.time()
time_elapsed = current_time - self.last_sent_time
if time_elapsed >= SUMMARIZATION_INT_SEC and len(
self.transcribed_text
):
await self.summarize_and_send(self.transcribed_text)
self.transcribed_text = ""
self.last_sent_time = current_time
else:
# print("No speaker identified for recognized text.")
message = f"(Unknown): {recognized_text}" # Handle unidentified speaker
else:
print("No recognized text found in the event.")
pass
await stream.aclose()
# async def process_text_from_speech(self, stream):
# async for event in stream:
# if not event.is_final:
# # received a partial result, STT result be updated as confidence increases
# continue
# if event.alternatives:
# for alt in event.alternatives:
# print(alt.text)
# first_alternative = event.alternatives[0]
# recognized_text = first_alternative.text
# speaking_participant = None
# speaking_participant_name = None
# for participant_id, is_speaking in self.speaking_participants.items():
# if is_speaking:
# speaking_participant = participant_id
# speaking_participant_name = self.ctx.room.participants[
# participant_id
# ].name
# # break
# print(speaking_participant_name)
# print("*"*20)
# if speaking_participant and len(recognized_text):
# await self.chat.send_message(
# speaking_participant_name + ": " + recognized_text
# )
# self.transcribed_text += (
# f"{speaking_participant_name}: {recognized_text}\n"
# )
# current_time = time.time()
# time_elapsed = current_time - self.last_sent_time
# if time_elapsed >= SUMMARIZATION_INT_SEC and len(
# self.transcribed_text
# ):
# await self.summarize_and_send(self.transcribed_text)
# self.transcribed_text = ""
# self.last_sent_time = current_time
# else:
# # print("No speaker identified for recognized text.")
# message = (
# f"(Unknown): {recognized_text}" # Handle unidentified speaker
# )
# else:
# print("No recognized text found in the event.")
# pass
# await stream.aclose()
async def summarize(self, message: str):
chat_completion = await self.summarizer.chat.completions.create(
messages=[
{
"role": "user",
"content": "Summarize the conversation or monologue: " + message,
}
],
model="gpt-3.5-turbo",
)
return chat_completion.dict()["choices"][0]["message"]["content"]
async def summarize_and_send(self, message: str):
summarized_text = await self.summarize(message)
await self.chat.send_message(summarized_text)
# async def process_text_from_speech(self, stream):
# async for event in stream:
# if not event.is_final:
# # received a partial result, STT result be updated as confidence increases
# continue
# if event.alternatives:
# first_alternative = event.alternatives[0]
# recognized_text = (
# first_alternative.text
# ) # Adjust this attribute access as necessary
# speaking_participant = None
# # speaking_participant_identity = None
# for participant_id, is_speaking in self.speaking_participants.items():
# if is_speaking:
# speaking_participant = participant_id
# # speaking_participant_identity = self.ctx.room.participants[participant_id].identity
# break
# if speaking_participant and len(recognized_text):
# await self.chat.send_message(recognized_text)
# else:
# # print("No speaker identified for recognized text.")
# message = (
# f"(Unknown): {recognized_text}" # Handle unidentified speaker
# )
# else:
# print("No recognized text found in the event.")
# pass
# await stream.aclose()
# async def process_video_track(self, track: rtc.VideoTrack):
# video_stream = rtc.VideoStream(track)
# wrapped_video_stream = LatestFrameVideoStreamWrapper(video_stream, max_fps=FPS_LIMIT)
# start_time = time.time()
# frame_count = 0
# async for frame in wrapped_video_stream:
# # videoFrame to opencv BGR image
# opencv_image = frame.frame.convert(rtc.VideoBufferType.RGB24).data.tobytes()
# opencv_image = np.ndarray(
# buffer=opencv_image,
# dtype=np.uint8,
# shape=(frame.frame.height, frame.frame.width, 3),
# )
# # detect
# latest_results = self.detect(opencv_image)
# if not latest_results or len(latest_results) == 0:
# continue
# # insight face process
# opencv_image = self.swapper.get(opencv_image, latest_results[0], self.source_face, paste_back=True)
# rgba_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2RGBA)
# argb_frame = rtc.VideoFrame(
# rgba_image.shape[1],
# rgba_image.shape[0],
# rtc.VideoBufferType.RGBA,
# rgba_image.tobytes(),
# )
# self.video_out.capture_frame(argb_frame)
# frame_count += 1
# # Calculate FPS every 5 seconds
# start_time, frame_count = self.calculate_fps(start_time, frame_count)
def calculate_fps(self):
current_time = time.time()
if current_time - self.start_time >= 5:
elapsed_time = current_time - self.start_time
fps = self.frame_count / elapsed_time
print(f"FPS: {fps}", end="\r")
# Reset counters for the next interval
self.start_time = current_time
self.frame_count = 0
return
async def calculate_fps_continuously(self):
while True:
await asyncio.sleep(5) # Wait for 5 seconds
self.calculate_fps()
async def process_video_track(self, track: rtc.VideoTrack):
video_stream = rtc.VideoStream(track)
wrapped_video_stream = LatestFrameVideoStreamWrapper(
video_stream, max_fps=FPS_LIMIT
)
self.start_time = time.time() # Store start time as an attribute
self.frame_count = 0 # Store frame count as an attribute
async def process_frame(frame, swapper):
# source_face = Image.open(args.source_image)
# target_face = Image.open(args.target_image)
# source_face = np.asarray(source_face)
target_face = np.asarray(target_face)
# Perform inference
result = image_infer.inference(self.source_face, target_face, args.shape_rate, args.id_rate, args.iterations)
rgba_image = cv2.cvtColor(result, cv2.COLOR_RGB2RGBA)
argb_frame = rtc.VideoFrame(
rgba_image.shape[1],
rgba_image.shape[0],
rtc.VideoBufferType.RGBA,
rgba_image.tobytes(),
)
return argb_frame
# Save the result
# result = Image.fromarray(result)
# videoFrame to opencv BGR image
# opencv_image = frame.frame.convert(rtc.VideoBufferType.RGB24).data.tobytes()
# opencv_image = np.ndarray(
# buffer=opencv_image,
# dtype=np.uint8,
# shape=(frame.frame.height, frame.frame.width, 3),
# )
# # detect
# latest_results = self.detect(opencv_image)
# if not latest_results or len(latest_results) == 0:
# return None
# # insight face process
# opencv_image = swapper.get(
# opencv_image, latest_results[0], self.source_face, paste_back=True
# )
# rgba_image = cv2.cvtColor(opencv_image, cv2.COLOR_RGB2RGBA)
# argb_frame = rtc.VideoFrame(
# rgba_image.shape[1],
# rgba_image.shape[0],
# rtc.VideoBufferType.RGBA,
# rgba_image.tobytes(),
# )
# return argb_frame
async def process_frames():
# num_swappers = len(self.swappers)
async def process_single_frame(frame, swapper):
processed_frame = await process_frame(frame, swapper)
if processed_frame is not None:
self.video_out.capture_frame(processed_frame)
self.frame_count += 1
async def process_frame_with_swapper(frame, swapper_index):
swapper = self.swappers[swapper_index]
await process_single_frame(frame, swapper)
# idx = 0
# num_swappers = len(self.swappers)
async for frame in wrapped_video_stream:
# swapper_index = idx % num_swappers
# idx += 1
asyncio.create_task(process_frame_with_swapper(frame, swapper_index))
# Start the process_frames task
process_frames_task = asyncio.create_task(process_frames())
# Start the calculate_fps_continuously task
calculate_fps_task = asyncio.create_task(self.calculate_fps_continuously())
# Wait for both tasks to complete
await asyncio.gather(process_frames_task, calculate_fps_task)
# def detect(self, frame):
# # if (not self.detector) or self.detecting:
# # return
# self.update_state("detecting")
# self.detecting = True
# try:
# # results = await self.detector.get(img=frame)
# # Wrap the synchronous call in run_in_executor
# # loop = asyncio.get_event_loop()
# # results = await loop.run_in_executor(None, self.detector.get, frame)
# results = self.detector.get(frame)
# self.latest_results = results
# finally:
# self.detecting = False
# return results
def update_state(self, state: str):
metadata = json.dumps({"agent_state": state})
self.ctx.create_task(self.ctx.room.local_participant.update_metadata(metadata))
class LatestFrameVideoStreamWrapper:
def __init__(self, video_stream, max_fps=None):
self._video_stream = video_stream
self._latest_frame = None
self._max_fps = max_fps
self._frame_interval = 1.0 / max_fps if max_fps is not None else None
self._last_frame_time = None
async def __aiter__(self):
async for frame in self._video_stream:
if self._frame_interval is None:
self._latest_frame = frame
yield frame
else:
current_time = self._video_stream._loop.time()
if (
self._last_frame_time is None
or (current_time - self._last_frame_time) >= self._frame_interval
):
self._latest_frame = frame
self._last_frame_time = current_time
yield frame
def get_latest_frame(self):
return self._latest_frame
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
async def job_request_cb(job_request: agents.JobRequest):
logging.info("Accepting job for faceswap")
await job_request.accept(
DeepfakeSTT.create,
identity="DeepfakeSTT_agent",
auto_subscribe=agents.AutoSubscribe.SUBSCRIBE_ALL,
auto_disconnect=agents.AutoDisconnect.DEFAULT,
)
worker = agents.Worker(job_request_cb)
agents.run_app(worker)