|
| 1 | +import numpy as np |
| 2 | +import tensorflow as tf |
| 3 | +from skimage import io |
| 4 | +from skimage import color |
| 5 | +import sqlite3 |
| 6 | +import cv2 |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +import os |
| 9 | +import random |
| 10 | +from tqdm import tqdm |
| 11 | +from pdb import set_trace as brk |
| 12 | +import sys |
| 13 | +# The following are the database properties available (last updated version 2012-11-28): |
| 14 | +# |
| 15 | +# databases: db_id, path, description |
| 16 | +# faceellipse: face_id, x, y, ra, rb, theta, annot_type_id, upsidedown |
| 17 | +# faceimages: image_id, db_id, file_id, filepath, bw, widht, height |
| 18 | +# facemetadata: face_id, sex, occluded, glasses, bw, annot_type_id |
| 19 | +# facepose: face_id, roll, pitch, yaw, annot_type_id |
| 20 | +# facerect: face_id, x, y, w, h, annot_type_id |
| 21 | +# faces: face_id, file_id, db_id |
| 22 | +# featurecoords: face_id, feature_id, x, y |
| 23 | +# featurecoordtype: feature_id, descr, code, x, y, z |
| 24 | +# AFLW 21 points landmark |
| 25 | +# 0|LeftBrowLeftCorner |
| 26 | +# 1|LeftBrowCenter |
| 27 | +# 2|LeftBrowRightCorner |
| 28 | +# 3|RightBrowLeftCorner |
| 29 | +# 4|RightBrowCenter |
| 30 | +# 5|RightBrowRightCorner |
| 31 | +# 6|LeftEyeLeftCorner |
| 32 | +# 7|LeftEyeCenter |
| 33 | +# 8|LeftEyeRightCorner |
| 34 | +# 9|RightEyeLeftCorner |
| 35 | +# 10|RightEyeCenter |
| 36 | +# 11|RightEyeRightCorner |
| 37 | +# 12|LeftEar |
| 38 | +# 13|NoseLeft |
| 39 | +# 14|NoseCenter |
| 40 | +# 15|NoseRight |
| 41 | +# 16|RightEar |
| 42 | +# 17|MouthLeftCorner |
| 43 | +# 18|MouthCenter |
| 44 | +# 19|MouthRightCorner |
| 45 | +# 20|ChinCenter |
| 46 | + |
| 47 | +select_string = "faceimages.filepath, faces.face_id, facepose.roll, facepose.pitch, facepose.yaw, facerect.x, facerect.y, facerect.w, facerect.h,faceimages.image_id,facemetadata.sex" |
| 48 | +from_string = "faceimages, faces, facepose, facerect,facemetadata" |
| 49 | +where_string = "faces.face_id = facepose.face_id and faces.file_id = faceimages.file_id and faces.face_id = facerect.face_id and faces.face_id = facemetadata.face_id" |
| 50 | +query_string = "SELECT " + select_string + " FROM " + from_string + " WHERE " + where_string |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | + |
| 55 | +conn = sqlite3.connect('/home/shashank/Documents/CSE-252C/AFLW/aflw/data/aflw.sqlite') |
| 56 | +c = conn.cursor() |
| 57 | + |
| 58 | +img_path = '/home/shashank/Documents/CSE-252C/AFLW/' |
| 59 | +loc_file_path = '/home/shashank/Documents/CSE-252C/hyperface/code/locations_test/' |
| 60 | +tfrecords_train_filename = 'test_check.tfrecords' |
| 61 | +tfrecords_test_filename = 'aflw_test_new.tfrecords' |
| 62 | + |
| 63 | +writer_train = tf.python_io.TFRecordWriter(tfrecords_train_filename) |
| 64 | +writer_test = tf.python_io.TFRecordWriter(tfrecords_test_filename) |
| 65 | + |
| 66 | +def _bytes_feature(value): |
| 67 | + return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) |
| 68 | + |
| 69 | +def _float_feature(value): |
| 70 | + return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) |
| 71 | + |
| 72 | +def _int64_feature(value): |
| 73 | + return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) |
| 74 | + |
| 75 | +def test_names(): |
| 76 | + l=[] |
| 77 | + names = os.listdir(img_path+'0') |
| 78 | + random.shuffle(names) |
| 79 | + l.append(['0/'+name for name in names[:300]]) |
| 80 | + |
| 81 | + names = os.listdir(img_path+'2') |
| 82 | + random.shuffle(names) |
| 83 | + l.append(['2/'+name for name in names[:300]]) |
| 84 | + |
| 85 | + names = os.listdir(img_path+'3') |
| 86 | + random.shuffle(names) |
| 87 | + l.append(['3/'+name for name in names[:400]]) |
| 88 | + |
| 89 | + return l[0]+l[1]+l[2] |
| 90 | + |
| 91 | +def make_tfrecord(test_images): |
| 92 | + |
| 93 | + it_test =0 |
| 94 | + it_train = 0 |
| 95 | + gender_dict={'m':1,'f':0} |
| 96 | + |
| 97 | + for row in (c.execute(query_string)): |
| 98 | + ''' |
| 99 | + row[0] = image path str |
| 100 | + row[1] = face id int |
| 101 | + row[2] = roll float |
| 102 | + row[3] = pitch float |
| 103 | + row[4] = yaw float |
| 104 | + row[5] = x int |
| 105 | + row[6] = y int |
| 106 | + row[7] = w int |
| 107 | + row[8] = h int |
| 108 | + ''' |
| 109 | + |
| 110 | + |
| 111 | + center_x = float(row[5]) + float(row[7])/2 |
| 112 | + center_y = float(row[6]) + float(row[8])/2 |
| 113 | + |
| 114 | + |
| 115 | + if not os.path.exists(loc_file_path+str(row[1])): |
| 116 | + continue |
| 117 | + |
| 118 | + select_str = "coords.feature_id, coords.x, coords.y" |
| 119 | + from_str = "featurecoords coords" |
| 120 | + where_str = "coords.face_id = {}".format(row[1]) |
| 121 | + query_str = "SELECT " + select_str + " FROM " + from_str + " WHERE " + where_str |
| 122 | + landmark = np.zeros((21,2)).astype(np.float32) |
| 123 | + visibility = np.zeros((21,1)).astype(np.int32) |
| 124 | + |
| 125 | + c2 = conn.cursor() |
| 126 | + |
| 127 | + for xx in c2.execute(query_str): |
| 128 | + landmark[xx[0]-1][0] = xx[1]#(xx[1] - center_x)/float(row[7]) |
| 129 | + landmark[xx[0]-1][1] = xx[2]#(xx[2] - center_y)/float(row[8]) |
| 130 | + visibility[xx[0]-1] = 1 |
| 131 | + landmark = landmark.reshape(-1,42) |
| 132 | + |
| 133 | + c2.close() |
| 134 | + |
| 135 | + try: |
| 136 | + |
| 137 | + img_raw = (np.asarray(cv2.imread(img_path+row[0])).astype(np.float32))/255.0 |
| 138 | + cv2.imwrite('save_im.jpg',img_raw*255) |
| 139 | + landmark_pos = None |
| 140 | + |
| 141 | + if len(img_raw.shape) !=3: |
| 142 | + continue#img_raw = color.gray2rgb(img_raw) |
| 143 | + if len(img_raw.shape) !=3 or img_raw.shape[2] != 3: |
| 144 | + continue |
| 145 | + print row[1] |
| 146 | + |
| 147 | + w = img_raw.shape[1] |
| 148 | + h = img_raw.shape[0] |
| 149 | + if os.path.isfile(loc_file_path+str(row[1])+'/positive.npy'): |
| 150 | + pos_locs = np.load(loc_file_path+str(row[1])+'/positive.npy')[:,:4] |
| 151 | + cof_locs = np.tile(np.load(loc_file_path+str(row[1])+'/positive.npy')[:,4:6],(1,21)) |
| 152 | + dim_locs = np.tile(np.load(loc_file_path+str(row[1])+'/positive.npy')[:,6:8],(1,21)) |
| 153 | + n_pos_locs = pos_locs.shape[0] |
| 154 | + |
| 155 | + landmark_pos = (landmark - cof_locs)/dim_locs |
| 156 | + visibility_pos = np.ones((landmark_pos.shape[0],21)) |
| 157 | + visibility_pos[(np.where(landmark_pos > 0.5)[0],np.where(landmark_pos > 0.5)[1]/2)] = 0 |
| 158 | + visibility_pos[(np.where(landmark_pos < -0.5)[0],np.where(landmark_pos < -0.5)[1]/2)] = 0 |
| 159 | + |
| 160 | + # visibility_pos[np.where(landmark_pos)] |
| 161 | + pos_locs = pos_locs.astype(np.float32).tostring() |
| 162 | + |
| 163 | + # if pos_locs.shape[0] > 0: |
| 164 | + # pos_locs = np.concatenate([pos_locs,np.asarray([row[6]/float(h),row[5]/float(w), |
| 165 | + # (row[6]+row[8])/float(h),(row[5]+row[7])/float(w)]).reshape(1,4)],axis=0) |
| 166 | + |
| 167 | + # n_pos_locs = pos_locs.shape[0] |
| 168 | + |
| 169 | + # pos_locs = pos_locs.astype(np.float32).tostring() |
| 170 | + # else: |
| 171 | + # pos_locs = np.asarray([[row[6]/float(h),row[5]/float(w),(row[6]+row[8])/float(h),(row[5]+row[7])/float(w)]]).reshape(1,4) |
| 172 | + # n_pos_locs = pos_locs.shape[0] |
| 173 | + # pos_locs = pos_locs.astype(np.float32).tostring() |
| 174 | + |
| 175 | + # else: |
| 176 | + # pos_locs = np.asarray([[row[6]/float(h),row[5]/float(w),(row[6]+row[8])/float(h),(row[5]+row[7])/float(w)]]).reshape(1,4) |
| 177 | + # n_pos_locs = pos_locs.shape[0] |
| 178 | + # pos_locs = pos_locs.astype(np.float32).tostring() |
| 179 | + |
| 180 | + |
| 181 | + |
| 182 | + if os.path.isfile(loc_file_path+str(row[1])+'/negative.npy'): |
| 183 | + neg_locs = np.load(loc_file_path+str(row[1])+'/negative.npy')[:,:4] |
| 184 | + n_neg_locs = neg_locs.shape[0] |
| 185 | + cof_locs = np.tile(np.load(loc_file_path+str(row[1])+'/negative.npy')[:,4:6],(1,21)) |
| 186 | + dim_locs = np.tile(np.load(loc_file_path+str(row[1])+'/negative.npy')[:,6:8],(1,21)) |
| 187 | + |
| 188 | + landmark_neg = (landmark - cof_locs)/dim_locs |
| 189 | + visibility_neg = np.zeros((landmark_neg.shape[0],21)) |
| 190 | + |
| 191 | + # visibility_pos[np.where(landmark_pos)] |
| 192 | + neg_locs = neg_locs.astype(np.float32).tostring() |
| 193 | + |
| 194 | + all_landmarks = np.concatenate([landmark_pos,landmark_neg],axis=0) |
| 195 | + all_visibilities = np.concatenate([visibility_pos,visibility_neg],axis=0) |
| 196 | + all_landmarks = all_landmarks.astype(np.float32).tostring() |
| 197 | + all_visibilities = all_visibilities.astype(np.int32).tostring() |
| 198 | + |
| 199 | + img_raw = img_raw.tostring() |
| 200 | + |
| 201 | + print "{},{}".format(n_pos_locs,n_neg_locs) |
| 202 | + |
| 203 | + pose_array = np.asarray([row[2],row[3],row[4]]).astype(np.float32) |
| 204 | + |
| 205 | + |
| 206 | + pose_array = pose_array.tostring() |
| 207 | + # landmark = landmark.tostring() |
| 208 | + # visibility=visibility.tostring() |
| 209 | + |
| 210 | + |
| 211 | + example = tf.train.Example(features=tf.train.Features(feature={ |
| 212 | + 'image_raw':_bytes_feature(img_raw), |
| 213 | + 'width': _int64_feature(w), |
| 214 | + 'height': _int64_feature(h), |
| 215 | + 'face_id': _int64_feature(row[1]), |
| 216 | + 'pose': _bytes_feature(pose_array), |
| 217 | + 'loc_x': _int64_feature(row[5]), |
| 218 | + 'loc_y': _int64_feature(row[6]), |
| 219 | + 'loc_w': _int64_feature(row[7]), |
| 220 | + 'loc_h': _int64_feature(row[8]), |
| 221 | + 'gender':_int64_feature(gender_dict[row[10]]), |
| 222 | + 'landmarks':_bytes_feature(all_landmarks), |
| 223 | + 'visibility':_bytes_feature(all_visibilities), |
| 224 | + 'pos_locs':_bytes_feature(pos_locs), |
| 225 | + 'neg_locs':_bytes_feature(neg_locs), |
| 226 | + 'n_pos_locs':_int64_feature(n_pos_locs), |
| 227 | + 'n_neg_locs':_int64_feature(n_neg_locs) |
| 228 | + })) |
| 229 | + |
| 230 | + writer_train.write(example.SerializeToString()) |
| 231 | + it_train += 1 |
| 232 | + break |
| 233 | + # if it_train >= 1: |
| 234 | + # break |
| 235 | + # if row[0] in test_images: |
| 236 | + # writer_test.write(example.SerializeToString()) |
| 237 | + # it_test += 1 |
| 238 | + # else: |
| 239 | + # writer_train.write(example.SerializeToString()) |
| 240 | + # it_train += 1 |
| 241 | + |
| 242 | + except Exception as e: |
| 243 | + exc_type, exc_obj, exc_tb = sys.exc_info() |
| 244 | + fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] |
| 245 | + print(exc_type, fname, exc_tb.tb_lineno) |
| 246 | + |
| 247 | + |
| 248 | + print it_test,it_train |
| 249 | + c.close() |
| 250 | + writer_train.close() |
| 251 | + writer_test.close() |
| 252 | + |
| 253 | +def extract_tfrecord(): |
| 254 | + record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_train_filename) |
| 255 | + count =0 |
| 256 | + for string_record in tqdm(record_iterator): |
| 257 | + |
| 258 | + count += 1 |
| 259 | + example = tf.train.Example() |
| 260 | + example.ParseFromString(string_record) |
| 261 | + |
| 262 | + img_string = example.features.feature['image_raw'].bytes_list.value[0] |
| 263 | + landmark_string = example.features.feature['landmarks'].bytes_list.value[0] |
| 264 | + landmarks = np.fromstring(landmark_string, dtype=np.float32).reshape(21,2) |
| 265 | + img_width = int(example.features.feature['width'].int64_list.value[0]) |
| 266 | + img_height = int(example.features.feature['height'].int64_list.value[0]) |
| 267 | + |
| 268 | + img_2 = np.fromstring(img_string, dtype=np.uint8).reshape(-1,1) |
| 269 | + |
| 270 | + img_1d = np.fromstring(img_string, dtype=np.uint8).reshape(img_height,img_width,3) |
| 271 | + print img_1d.shape |
| 272 | + loc_x = int(example.features.feature['loc_x'].int64_list.value[0]) |
| 273 | + loc_y = int(example.features.feature['loc_y'].int64_list.value[0]) |
| 274 | + loc_w = int(example.features.feature['loc_w'].int64_list.value[0]) |
| 275 | + loc_h = int(example.features.feature['loc_h'].int64_list.value[0]) |
| 276 | + sex = int(example.features.feature['gender'].int64_list.value[0]) |
| 277 | + |
| 278 | + |
| 279 | + # center_x = img_width/2.0 |
| 280 | + # center_y = img_height/2.0 |
| 281 | + |
| 282 | + # centers = np.tile(np.array([center_x,center_y]).reshape(1,2),(21,1)) |
| 283 | + # normalized = landmarks - centers |
| 284 | + # w_h = np.tile(np.array([img_width,img_height]).reshape(1,2),(21,1)) |
| 285 | + |
| 286 | + # normalized = normalized/w_h |
| 287 | + |
| 288 | + # for i in range(normalized.shape[0]): |
| 289 | + # if i == 5 or i == 9 or i==15 or i==16: |
| 290 | + # continue |
| 291 | + # point_x = normalized[i][0]*img_width + img_width/2.0 |
| 292 | + # point_y = normalized[i][1]*img_height + img_height/2.0 |
| 293 | + |
| 294 | + # cv2.circle(img_1d,(int(point_x),int(point_y)), 1, (0,0,255), 2) |
| 295 | + |
| 296 | + # cv2.rectangle(img_1d,(loc_x,loc_y),(loc_x+loc_w,loc_y+loc_h),(0,255,0),3) |
| 297 | + # cv2.imshow('result',img_1d) |
| 298 | + # cv2.waitKey(0) |
| 299 | + |
| 300 | + |
| 301 | + |
| 302 | +if __name__ == '__main__': |
| 303 | + test_images = test_names() |
| 304 | + print len(test_images) |
| 305 | + make_tfrecord(test_images) |
| 306 | + #extract_tfrecord() |
| 307 | + |
0 commit comments