-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain_reaction.py
146 lines (129 loc) · 5.32 KB
/
chain_reaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
print("--- Chain Reaction ---")
class chain_reaction:
def __init__(self, row_count, column_count):
self.row_count = row_count
self.column_count = column_count
self.cell_count = self.row_count * self.column_count
self.move_limit = (3 * self.cell_count) - (2 * self.row_count) - (2 * self.column_count) + 1
self.move_count = 0
self.unstable_count = 0
self.infinite_loop = False
self.full_state = self.get_full_state()
def get_initial_state(self):
return np.zeros((self.row_count, self.column_count), dtype=int)
def get_full_state(self):
state = np.zeros((self.row_count, self.column_count), dtype=int)
# 1 cells - corners
state[0,0] = 1
state[0,self.column_count-1] = 1
state[self.row_count-1,0] = 1
state[self.row_count-1,self.column_count-1] = 1
# 2 cells - edges
for col in range(1, self.column_count-1):
state[0,col] = 2
state[self.row_count-1,col] = 2
for row in range(1, self.row_count-1):
state[row, 0] = 2
state[row, self.column_count-1] = 2
# 3 cells - middle
for row in range(1, self.row_count-1):
for col in range(1, self.column_count-1):
state[row,col] = 3
return state
def check_move_validity(self, state, player, move):
row, column = move
if row < 0 or row >= self.row_count:
print("Error: Index out of bounds")
return False
if column < 0 or column >= self.column_count:
print("Error: Index out of bounds")
return False
if state[row, column] * player < 0:
print("Error: Cell belongs to opponent")
return False
return True
def get_next_state(self, state, player, move):
self.move_count += 1
row, column = move
state[row,column] += player
# call nuclear_fission() only if current cell becomes unstable
if abs(state[row,column]) > self.full_state[row,column]:
self.unstable_count += 1
self.nuclear_fission(state, player, move)
self.unstable_count = 0
return state
def nuclear_fission(self, state, player, move):
if self.unstable_count > self.cell_count:
self.infinite_loop = True
return
row, column = move
state[row,column] -= (self.full_state[row,column] + 1)*player
# cell above
if row-1 >= 0:
state[row-1,column] = state[row-1,column]*(-1,1)[int(state[row-1,column] * player >= 0)] + player
if abs(state[row-1,column]) > self.full_state[row-1,column]:
self.unstable_count += 1
self.nuclear_fission(state, player, (row-1,column))
# cell below
if row+1 < self.row_count:
state[row+1,column] = state[row+1,column]*(-1,1)[int(state[row+1,column] * player >= 0)] + player
if abs(state[row+1,column]) > self.full_state[row+1,column]:
self.unstable_count += 1
self.nuclear_fission(state, player, (row+1,column))
# cell to left
if column-1 >= 0:
state[row,column-1] = state[row,column-1]*(-1,1)[int(state[row,column-1] * player >= 0)] + player
if abs(state[row,column-1]) > self.full_state[row,column-1]:
self.unstable_count += 1
self.nuclear_fission(state, player, (row,column-1))
# cell to right
if column+1 < self.column_count:
state[row,column+1] = state[row,column+1]*(-1,1)[int(state[row,column+1] * player >= 0)] + player
if abs(state[row,column+1]) > self.full_state[row,column+1]:
self.unstable_count += 1
self.nuclear_fission(state, player, (row,column+1))
def get_value_and_terminated(self, state, player):
if self.infinite_loop:
return 1, True
elif self.move_count < self.move_limit:
return 0, False
else:
if self.check_win(state, player):
return 1, True
else:
return 0, True
def check_win(self, state, player):
player_cells = [0,0]
for row in range(self.row_count):
for col in range(self.column_count):
if state[row,col] > 0:
player_cells[0] += 1
else:
player_cells[1] += 1
# player wins if opponent has no cells
if player == 1:
return (player_cells[1] == 0)
else:
return (player_cells[0] == 0)
def get_opponent(self, player):
return -player
# main code
cr = chain_reaction(6,6)
player = 1
state = cr.get_initial_state()
while True:
print(state)
move = tuple(map(int, input(f"{player}:").split(',')))
if not cr.check_move_validity(state, player, move):
continue
state = cr.get_next_state(state, player, move)
value, terminated = cr.get_value_and_terminated(state, player)
if terminated:
print(state)
if value == 1:
print(f"Player {player} won")
else:
print("Game Drawn")
break
player = cr.get_opponent(player)