-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschelling-segregation.R
276 lines (242 loc) · 10.2 KB
/
schelling-segregation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# ================ Schelling's Segregation Model ================
# Sarah Li
# http://heysarah.li/
# https://github.com/serifluous
#=================
# Setup
#=================
rm(list=ls())
library(ggplot2)
library(knitr)
# ============== Machinery for the Schelling Model ==============
#
# ===============================================================
# Distance : vector matrix -> vector
# Calculates distances between a given point and list of points
# ================
Distance <- function(point, all.points)
{
number.of.points = dim(all.points)[1]
distances = rep(NA,number.of.points)
for (i in 1:number.of.points) {
x.distance = (point[1] - all.points[i,1])^2
y.distance = (point[2] - all.points[i,2])^2
distances[i] = sqrt(x.distance + y.distance)
}
return(distances)
}
# ================
# RandomizePopulation: num num num -> (data frame)
# Given population totals of red (r = 1), green (g = 2), and blue (b = 3),
# RandomizePopulation takes the population of each type and
# produces a data frame with each individual and his/her random house allocation
# ================
RandomizePopulation <- function(r.population = 0, g.population = 0, b.population = 0)
{
total.population = r.population + g.population + b.population
# Produce data points for given populations
total.population.vector = c(rep(1, r.population),
rep(2, g.population),
rep(3, b.population))
# Randomize order of points in vector
randomized.population = sample(total.population.vector, total.population)
# Chooses random house allocation on x-y plane bounded by (0,1) on both sides
first.allocation = cbind(randomized.population,
runif(total.population,0,1),
runif(total.population,0,1),
rep(0, total.population))
return(as.data.frame(first.allocation))
}
# ================
# PickANewHouse : num num (data frame) (data frame) -> (data frame)
# Generates a new house allocation for the given individual j if the ratio of neighbors is unsatisfactory.
# If the individual is satisfied, Column 4 'satisfied?' = true
# ================
# Distances data frame:
# Column 1 = individual type (i.e., color)
# Column 2 = distance from the given individual's house
# ================
# Population data frame:
# Column 1 = type
# Column 2 = x
# Column 3 = y
# Column 4 = satisfied?
# ================
PickANewHouse <- function(j, type, distances.df, population.df)
{
# *.ratio, *.neighbors.considered are global variables.
# See function Schelling below.
# Selects ratio of neighbors of same type deemed satisfactory
# and number of neighbors considered in ratio
# depending on type of individual j
if (type == 1) {
selected.ratio = r.ratio
neighbors.considered = distances.df[1:r.neighbors.considered,]
} else if (type == 2) {
selected.ratio = g.ratio
neighbors.considered = distances.df[1:g.neighbors.considered,]
} else {
selected.ratio = b.ratio
neighbors.considered = distances.df[1:b.neighbors.considered,]
}
# Calculates actual ratio
same.type = subset(neighbors.considered, neighbors.considered[,1] == type)
j.ratio = dim(same.type)[1] / dim(neighbors.considered)[1]
# Randomizes housing allocation if ratio is unsatisfactory.
# Otherwise, 'satisfactory?' = true
if (j.ratio < selected.ratio) {
population.df[j,2] = runif(1,0,1)
population.df[j,3] = runif(1,0,1)
} else {
population.df[j,4] = 1
}
return(population.df)
}
# ================
# NewAllocation: (data frame) num num num num num num -> (data frame)
# If there still remain unsatisfied individuals,
# NewAllocation generates new housing allocations for those who are unsatisfied
# ================
NewAllocation <- function(population)
{
population.df <<- population
total.population = dim(population.df)[1]
for (j in 1:total.population) {
distances = Distance(c(population.df[j,2], population.df[j,3]),
cbind(population.df[,2], population.df[,3]))
distances.with.type = cbind(population.df[,1], distances)
distances.df <<- as.data.frame(distances.with.type)
distances.df <<- distances.df[order(distances.df$distances),]
distances.df <<- distances.df[-1,]
population.df <<- PickANewHouse(j, population.df[j,1], distances.df, population.df)
}
return(population.df)
}
# ================
# Ternary operator function, by Stack Overflow user kohske
# http://stackoverflow.com/questions/8790143/does-the-ternary-operator-exist-in-r
# ================
`?` <- function(x, y)
{
eval(
sapply(
strsplit(
deparse(substitute(y)),
":"
),
function(e) parse(text = e)
)[[2 - as.logical(x)]])
}
# ================ Schelling's Segregation Model ================
#
# ===============================================================
# Schelling : num num num num num num num num num -> plot (data frame)
# Simulates Schelling's Segregation model
# ================
Schelling <- function(r.population = 0,
g.population = 0,
b.population = 0,
r.same.type.desired = 0, r.neighbors.considered = 0,
g.same.type.desired = 0, g.neighbors.considered = 0,
b.same.type.desired = 0, b.neighbors.considered = 0)
{
r.same.type.desired <<- r.same.type.desired
r.neighbors.considered <<- r.neighbors.considered
g.same.type.desired <<- g.same.type.desired
g.neighbors.considered <<- g.neighbors.considered
b.same.type.desired <<- b.same.type.desired
b.neighbors.considered <<- b.neighbors.considered
r.ratio <<- ((r.neighbors.considered != 0) ? (r.same.type.desired / r.neighbors.considered) : 0)
g.ratio <<- ((g.neighbors.considered != 0) ? (g.same.type.desired / g.neighbors.considered) : 0)
b.ratio <<- ((b.neighbors.considered != 0) ? (b.same.type.desired / b.neighbors.considered) : 0)
total.population = r.population + g.population + b.population
allocation <<- RandomizePopulation(r.population, g.population, b.population)
allocated.plot <- ggplot(allocation, aes(x=V2, y=V3)) +
geom_point(colour=(allocation$randomized.population + 1), size = 4, alpha = 0.6) +
scale_fill_brewer() +
theme(plot.title = element_text(size=20, face="bold", vjust = 2), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.ticks = element_blank()) +
labs(title = "Schelling's Segregation Model\nIteration 0\nHappiness: ???? %", x = "X", y = "Y")
print(allocated.plot)
i = 0
while (1) {
number.satisfied = dim(subset(allocation, allocation[,4] == 1))[1]
if ((number.satisfied/total.population) != 1) {
allocation[,4] <<- rep(0,total.population)
allocation <<- NewAllocation(allocation)
i = i+1
number.satisfied = dim(subset(allocation, allocation[,4] == 1))[1]
print(paste("Percent Happy:", 100 * (number.satisfied/total.population),
"(iteration", i, ")" ))
allocated.plot <- ggplot(allocation, aes(x=V2, y=V3)) +
geom_point(colour=(allocation$randomized.population + 1), size = 4, alpha = 0.6) +
scale_fill_brewer() +
theme(plot.title = element_text(size=20, face="bold", vjust = 2), axis.title.x = element_blank(), axis.title.y = element_blank(), axis.ticks = element_blank()) +
labs(title = paste("Schelling's Segregation Model\nIteration", i,"\nHappiness:", round(100 * number.satisfied/total.population,2), "%"), x = "X", y = "Y")
print(allocated.plot)
} else {
print(paste("Iterations: ", i))
schelling.iterations <<- i
return(allocation)
}
}
}
# ================
# Similar Neighbors Index
# ================
# SimilarNeighbors : (dataframe) -> num
# Calculates mean of proportion of neighbors similar to each individual
# ================
SimilarNeighbors <- function(allocation)
{
total.population = dim(allocation)[1]
neighbors <- rep(NA,total.population)
for (j in 1:total.population) {
distances = Distance(c(population.df[j,2], population.df[j,3]),
cbind(population.df[,2], population.df[,3]))
distances.with.type = cbind(population.df[,1], distances)
distances.df <<- as.data.frame(distances.with.type)
distances.df <<- distances.df[order(distances.df$distances),]
distances.df <<- distances.df[-1,]
type = allocation[j,1]
if (type == 1) {
neighbors.considered = distances.df[1:r.neighbors.considered,]
} else if (type == 2) {
neighbors.considered = distances.df[1:g.neighbors.considered,]
} else {
neighbors.considered = distances.df[1:b.neighbors.considered,]
}
same.type = subset(neighbors.considered, neighbors.considered[,1] == type)
j.ratio = dim(same.type)[1] / dim(neighbors.considered)[1]
neighbors[j] = j.ratio
}
return(mean(neighbors))
}
# ================ Sample Output ================
#
# ================
# Sample 1
# Each population has 150 individuals
# and are satisfied if at least 3/8 of their neighbors are similar
# ================
sample.schelling.1 = Schelling(r.population = 150,
g.population = 150,
b.population = 150,
r.same.type.desired = 3, r.neighbors.considered = 8,
g.same.type.desired = 3, g.neighbors.considered = 8,
b.same.type.desired = 3, b.neighbors.considered = 8)
# Similar Neighbor Index for Sample 1
SimilarNeighbors(sample.schelling.1)
# ================
# Sample 2
# The first population has 500 individuals and satisfied if 9/12 neighbors are similar
# The second and third population have 100 individuals each
# and are satisfied if 2/12 neighbors are similar
# ================
sample.schelling.2 = Schelling(r.population = 500,
g.population = 100,
b.population = 100,
r.same.type.desired = 9, r.neighbors.considered = 12,
g.same.type.desired = 2, g.neighbors.considered = 12,
b.same.type.desired = 2, b.neighbors.considered = 12)
# Similar Neighbor Index for Sample 2
SimilarNeighbors(sample.schelling.2)