forked from facebookresearch/msn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhg_npy_save.py
86 lines (71 loc) · 3.18 KB
/
hg_npy_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import logging
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import yaml
from time import strftime, localtime
import numpy as np
import os
import argparse
start_time_stamp = strftime("%m-%d_%H%M", localtime())
cur_fname = os.path.basename(__file__).rstrip('.py')
log_save_dir = os.path.join('logs', f'{cur_fname}_{start_time_stamp}.log')
logging.basicConfig(filename=log_save_dir, level=logging.INFO)
logger = logging.getLogger()
def main(args):
with open(args.fname, 'r') as file:
cfg = yaml.safe_load(file)
root_path = "FID-300"
device = args.devices
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
model.to(device)
# google_vit-base-patch16-224
save_dir = f'np_features_{args.model_name}'
os.makedirs(os.path.join(save_dir, "query"), exist_ok=True)
os.makedirs(os.path.join(save_dir, "ref"), exist_ok=True)
img_list = os.listdir(os.path.join(root_path, cfg['data_path']['query_train']))
for img in img_list:
image = Image.open(os.path.join(root_path, cfg['data_path']['query_train'], img)).convert('RGB')
inputs = processor(images=image, return_tensors="pt")
inputs.to(device)
outputs = model(**inputs)
query_idx_str = img.split('.')[0]
save_fname = os.path.join(save_dir, "query", f"{query_idx_str}.npy")
saved_tensor = outputs.logits.cpu().detach().numpy()
np.save(save_fname, saved_tensor)
img_list = os.listdir(os.path.join(root_path, cfg['data_path']['query_test']))
for img in img_list:
image = Image.open(os.path.join(root_path, cfg['data_path']['query_test'], img)).convert('RGB')
inputs = processor(images=image, return_tensors="pt")
inputs.to(device)
outputs = model(**inputs)
query_idx_str = img.split('.')[0]
save_fname = os.path.join(save_dir, "query", f"{query_idx_str}.npy")
saved_tensor = outputs.logits.cpu().detach().numpy()
np.save(save_fname, saved_tensor)
img_list = os.listdir(os.path.join(root_path, cfg['data_path']['ref_test']))
for img in img_list:
image = Image.open(os.path.join(root_path, cfg['data_path']['ref_test'], img)).convert('RGB')
inputs = processor(images=image, return_tensors="pt")
inputs.to(device)
outputs = model(**inputs)
query_idx_str = img.split('.')[0]
save_fname = os.path.join(save_dir, "ref", f"{query_idx_str}.npy")
saved_tensor = outputs.logits.cpu().detach().numpy()
np.save(save_fname, saved_tensor)
if __name__ == "__main__":
'''
args format example:
"args": [
"--fname",
"configs/eval/test_custom.yaml",
"--devices",
"cuda:0"
]
'''
parser = argparse.ArgumentParser()
parser.add_argument("--fname", type=str, help="path to config file")
parser.add_argument("--devices", type=str, help="device to use")
parser.add_argument("--model_name", type=str, help="model name")
args = parser.parse_args()
main(args)