|
| 1 | +import numpy as np |
| 2 | +import scipp as sc |
| 3 | + |
| 4 | +from ..reflectometry.normalization import ( |
| 5 | + reduce_from_events_to_lz, |
| 6 | + reduce_from_events_to_q, |
| 7 | + reduce_from_lz_to_q, |
| 8 | +) |
| 9 | + |
| 10 | + |
| 11 | +def solve_for_calibration_parameters(Io, Is): |
| 12 | + Iopp, Iopa, Ioap, Ioaa = Io |
| 13 | + Ipp, Ipa, Iap, Iaa = Is |
| 14 | + |
| 15 | + I0 = 2 * (Iopp * Ioaa - Iopa * Ioap) / (Iopp + Ioaa - Iopa - Ioap) |
| 16 | + rho = (Ioaa - Ioap) / (Iopp - Iopa) |
| 17 | + alp = (Ioaa - Iopa) / (Iopp - Ioap) |
| 18 | + |
| 19 | + Rspp_plus_Rsaa = ( |
| 20 | + 4 |
| 21 | + * (rho * alp * Ipp + Iaa + rho * Ipa + alp * Iap) |
| 22 | + / ((1 + rho) * (1 + alp) * I0) |
| 23 | + ) |
| 24 | + Pp = sc.sqrt( |
| 25 | + (Ipp + Iaa - Ipa - Iap) |
| 26 | + * (alp * (Ipp - Iap) - Iaa + Ipa) |
| 27 | + / ( |
| 28 | + (rho * alp * Ipp + Iaa + rho * Ipa + alp * Iap) |
| 29 | + * (rho * (Ipp - Ipa) - Iaa + Iap) |
| 30 | + ) |
| 31 | + ) |
| 32 | + Ap = sc.sqrt( |
| 33 | + (Ipp + Iaa - Ipa - Iap) |
| 34 | + * (rho * (Ipp - Ipa) - Iaa + Iap) |
| 35 | + / ( |
| 36 | + (rho * alp * Ipp + Iaa + rho * Ipa + alp * Iap) |
| 37 | + * (alp * (Ipp - Iap) - Iaa + Ipa) |
| 38 | + ) |
| 39 | + ) |
| 40 | + Rs = sc.sqrt( |
| 41 | + (alp * (Ipp - Iap) - Iaa + Ipa) |
| 42 | + * (rho * (Ipp - Ipa) - Iaa + Iap) |
| 43 | + / ((rho * alp * Ipp + Iaa + rho * Ipa + alp * Iap) * (Ipp + Iaa - Ipa - Iap)) |
| 44 | + ) |
| 45 | + |
| 46 | + Pa = -rho * Pp |
| 47 | + Aa = -alp * Ap |
| 48 | + |
| 49 | + Rspp_minus_Rsaa = Rs * Rspp_plus_Rsaa |
| 50 | + Rspp = (Rspp_plus_Rsaa + Rspp_minus_Rsaa) / 2 |
| 51 | + Rsaa = Rspp_plus_Rsaa - Rspp |
| 52 | + |
| 53 | + return I0 / 4, Pp, Pa, Ap, Aa, Rspp, Rsaa |
| 54 | + |
| 55 | + |
| 56 | +def generate_valid_calibration_parameters(): |
| 57 | + I0 = np.random.random() |
| 58 | + Pp = np.random.random() |
| 59 | + Pa = -np.random.random() |
| 60 | + Ap = np.random.random() |
| 61 | + Aa = -np.random.random() |
| 62 | + Rspp = np.random.random() |
| 63 | + Rsaa = Rspp * np.random.random() |
| 64 | + return tuple(map(sc.scalar, (I0, Pp, Pa, Ap, Aa, Rspp, Rsaa))) |
| 65 | + |
| 66 | + |
| 67 | +def intensity_from_parameters(I0, Pp, Pa, Ap, Aa, Rpp, Rpa, Rap, Raa): |
| 68 | + return ( |
| 69 | + I0 |
| 70 | + * ( |
| 71 | + Rpp * (1 + Ap) * (1 + Pp) |
| 72 | + + Rpa * (1 - Ap) * (1 + Pp) |
| 73 | + + Rap * (1 + Ap) * (1 - Pp) |
| 74 | + + Raa * (1 - Ap) * (1 - Pp) |
| 75 | + ), |
| 76 | + I0 |
| 77 | + * ( |
| 78 | + Rpp * (1 + Aa) * (1 + Pp) |
| 79 | + + Rpa * (1 - Aa) * (1 + Pp) |
| 80 | + + Rap * (1 + Aa) * (1 - Pp) |
| 81 | + + Raa * (1 - Aa) * (1 - Pp) |
| 82 | + ), |
| 83 | + I0 |
| 84 | + * ( |
| 85 | + Rpp * (1 + Ap) * (1 + Pa) |
| 86 | + + Rpa * (1 - Ap) * (1 + Pa) |
| 87 | + + Rap * (1 + Ap) * (1 - Pa) |
| 88 | + + Raa * (1 - Ap) * (1 - Pa) |
| 89 | + ), |
| 90 | + I0 |
| 91 | + * ( |
| 92 | + Rpp * (1 + Aa) * (1 + Pa) |
| 93 | + + Rpa * (1 - Aa) * (1 + Pa) |
| 94 | + + Rap * (1 + Aa) * (1 - Pa) |
| 95 | + + Raa * (1 - Aa) * (1 - Pa) |
| 96 | + ), |
| 97 | + ) |
| 98 | + |
| 99 | + |
| 100 | +def correction_matrix(Pp, Pa, Ap, Aa): |
| 101 | + return [ |
| 102 | + [ |
| 103 | + (1 + Pp) * (1 + Ap), |
| 104 | + (1 + Pp) * (1 - Ap), |
| 105 | + (1 - Pp) * (1 + Ap), |
| 106 | + (1 - Pp) * (1 - Ap), |
| 107 | + ], |
| 108 | + [ |
| 109 | + (1 + Pp) * (1 + Aa), |
| 110 | + (1 + Pp) * (1 - Aa), |
| 111 | + (1 - Pp) * (1 + Aa), |
| 112 | + (1 - Pp) * (1 - Aa), |
| 113 | + ], |
| 114 | + [ |
| 115 | + (1 + Pa) * (1 + Ap), |
| 116 | + (1 + Pa) * (1 - Ap), |
| 117 | + (1 - Pa) * (1 + Ap), |
| 118 | + (1 - Pa) * (1 - Ap), |
| 119 | + ], |
| 120 | + [ |
| 121 | + (1 + Pa) * (1 + Aa), |
| 122 | + (1 + Pa) * (1 - Aa), |
| 123 | + (1 - Pa) * (1 + Aa), |
| 124 | + (1 - Pa) * (1 - Aa), |
| 125 | + ], |
| 126 | + ] |
| 127 | + |
| 128 | + |
| 129 | +def compute_calibration_factors(Io, Is): |
| 130 | + I0, Pp, Pa, Ap, Aa, _, _ = solve_for_calibration_parameters(Io, Is) |
| 131 | + return I0, correction_matrix(Pp, Pa, Ap, Aa) |
| 132 | + |
| 133 | + |
| 134 | +def linsolve(A, b): |
| 135 | + return np.linalg.solve( |
| 136 | + np.stack([[a.values for a in row] for row in A]), |
| 137 | + np.stack([bi.values for bi in b], axis=-1), |
| 138 | + ) |
| 139 | + |
| 140 | + |
| 141 | +def computer_reflectivity_calibrate_on_q( |
| 142 | + reference_supermirror, |
| 143 | + reference_polarized_supermirror, |
| 144 | + sample, |
| 145 | + qbins, |
| 146 | +): |
| 147 | + reference_supermirror = [ |
| 148 | + reduce_from_lz_to_q(i, qbins) for i in reference_supermirror |
| 149 | + ] |
| 150 | + reference_polarized_supermirror = [ |
| 151 | + reduce_from_lz_to_q(i, qbins) for i in reference_polarized_supermirror |
| 152 | + ] |
| 153 | + sample = [reduce_from_events_to_q(i, qbins) for i in sample] |
| 154 | + I0, C = compute_calibration_factors( |
| 155 | + reference_supermirror, reference_polarized_supermirror |
| 156 | + ) |
| 157 | + return [i / I0 for i in linsolve(C, sample)] |
| 158 | + |
| 159 | + |
| 160 | +def computer_reflectivity_calibrate_on_lz( |
| 161 | + reference_supermirror, |
| 162 | + reference_polarized_supermirror, |
| 163 | + sample, |
| 164 | + wbins, |
| 165 | + qbins, |
| 166 | +): |
| 167 | + sample = reduce_from_events_to_lz(sample, wbins) |
| 168 | + I0, C = compute_calibration_factors( |
| 169 | + reference_supermirror, reference_polarized_supermirror |
| 170 | + ) |
| 171 | + sample = linsolve(C, sample) |
| 172 | + I0 = reduce_from_lz_to_q(I0, qbins) |
| 173 | + return [i / I0 for i in reduce_from_lz_to_q(sample, qbins)] |
0 commit comments