-
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrun-benchmark.sh
103 lines (85 loc) · 3.35 KB
/
run-benchmark.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/bin/bash
# Run the scikit-learn asv benchmark suite against master and commit the new
# result to https://github.com/scikit-learn/scikit-learn-benchmarks
# Add ssh key to be able to push to github
eval "$(ssh-agent -s)"
ssh-add ${HOME}/.ssh/sklbench
ssh-keyscan github.com >> ${HOME}/.ssh/known_hosts
# Config git
git config --global user.email "[email protected]"
git config --global user.name "sklearn-benchmark-bot"
# Clone the sklearn-benchmark repo which stores the benchmark results and hosts
# the benchmarks website https://scikit-learn.github.io/scikit-learn-benchmarks/
git clone [email protected]:scikit-learn/scikit-learn-benchmarks.git
# Clone scikit-learn. The benchmark suite is the asv_benchmarks/ directory
git clone https://github.com/scikit-learn/scikit-learn.git
pushd scikit-learn/asv_benchmarks
# Get the short hash of the last commit
COMMIT_TO_BENCH=$(git rev-parse HEAD)
COMMIT_TO_BENCH=${COMMIT_TO_BENCH:0:8}
# Get all previous results to regenerate the html
if [[ -d ${HOME}/scikit-learn-benchmarks/results ]]; then
cp -r ${HOME}/scikit-learn-benchmarks/results .
fi
# Install gcc
sudo apt-get update
sudo apt-get install --assume-yes gcc
sudo apt-get install --assume-yes g++
sudo apt-get install --assume-yes make
# install Conda
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh -O ${HOME}/miniconda.sh
bash ${HOME}/miniconda.sh -b -p ${HOME}/miniconda
PATH=${HOME}/miniconda/bin:${PATH}
# Create a conda env and install asv
conda create -y -n skl_benchmark python=3.11 asv
source ${HOME}/miniconda/etc/profile.d/conda.sh
conda activate skl_benchmark
# Create the .asv-machine.json file.
cat <<EOT >> ${HOME}/.asv-machine.json
{
"sklearn-benchmark": {
"arch": "x86_64",
"cpu": "Intel Core Processor (Haswell, no TSX)",
"machine": "sklearn-benchmark",
"num_cpu": "8",
"os": "Linux 4.15.0-20-generic",
"ram": "16424684"
},
"version": 1
}
EOT
# Run the benchmarks and generate the html
{
printf "***** Runner *****\n\n" >> log_$COMMIT_TO_BENCH
SKLBENCH_NJOBS=[1,4] asv run -e $COMMIT_TO_BENCH^! >> log_$COMMIT_TO_BENCH
printf "\n\n***** Publish *****\n\n" >> log_$COMMIT_TO_BENCH
asv publish >> log_$COMMIT_TO_BENCH
# versions of the libraries and info of BLAS and OpenMP
printf "\n\n***** Dependencies *****\n\n" >> log_$COMMIT_TO_BENCH
conda deactivate
conda activate env/$(ls env)
conda list >> log_$COMMIT_TO_BENCH
printf "\n\n***** Threadpool info *****\n\n" >> log_$COMMIT_TO_BENCH
python -m threadpoolctl -i sklearn >> log_$COMMIT_TO_BENCH
# system info
printf "\n\n***** System info *****\n\n" >> log_$COMMIT_TO_BENCH
lscpu >> log_$COMMIT_TO_BENCH
grep MemTotal /proc/meminfo >> log_$COMMIT_TO_BENCH
} || {
# something went wrong
printf "\n\nFAILED" >> log_$COMMIT_TO_BENCH
}
# Push the log of the run for potential debugging
mkdir --parents ${HOME}/scikit-learn-benchmarks/logs; mv log_$COMMIT_TO_BENCH $_/
# Move to scikit-learn-benchmarks/ to commit the new result
popd
pushd scikit-learn-benchmarks/
cp -r ${HOME}/scikit-learn/asv_benchmarks/results/ .
git add .
git commit -m "new result [$COMMIT_TO_BENCH]"
git push origin master
git checkout gh-pages
cp -r ${HOME}/scikit-learn/asv_benchmarks/html/* .
git add .
git commit -m "new result [$COMMIT_TO_BENCH]"
git push origin gh-pages