-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegment_metrics.py
43 lines (36 loc) · 1.91 KB
/
segment_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from torchmetrics.classification.jaccard import JaccardIndex
import torch
import numpy as np
class IOU_eval():
def __init__(self, ishybrid=False, num_classes=2):
super(IOU_eval,self).__init__()
self.iou = JaccardIndex(num_classes=num_classes) # automatically uses a threshold of 0.5 to convert predictions to binary integers
self.num_classes = num_classes
self.ishybrid = ishybrid
def iou_evaluate(self, unet, datax, datay):
iou_vals = []
iou_indices = []
m = datax.shape[0]
if self.ishybrid == True:
for image_indx in range(m):
image_arr,image_arr2 = unet(torch.from_numpy(datax[image_indx]).float())
image_arr = image_arr.squeeze(0).detach().cpu()
image_arr2 = image_arr2.squeeze(0).detach().cpu()
iou1 = self.iou(image_arr,torch.from_numpy(datay[image_indx]))
iou2 = self.iou(image_arr2,torch.from_numpy(datay[image_indx]))
iou_vals.append(0.5*torch.add(iou1,iou2).item())
iou_indices.append(torch.argmax(torch.from_numpy(np.asarray([iou1,iou2]))).item())
else:
for image_indx in range(m):
image_arr = unet(torch.from_numpy(datax[image_indx]).float().unsqueeze(0))
image_arr = image_arr.squeeze(0).detach().cpu()
iou1 = self.iou(image_arr,torch.from_numpy(datay[image_indx]))
iou_vals.append(iou1.item())
iou_indices.append(torch.argmax(torch.from_numpy(np.asarray([iou1,iou1]))).item())
return iou_vals, iou_indices
def iou_evaluate_better(self, y_true, y_pred):
iou_vals = []
for sample in range(y_pred.shape[0]):
iou = self.iou(y_pred[sample].detach().cpu(), y_true[sample].detach().cpu()) # can't be computed on gpu for some reason
iou_vals.append(iou)
return torch.mean(torch.stack(iou_vals))