meta | content | tags | dates | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
generative-apis ai-data chat-api |
|
Scaleway Generative APIs are designed as a drop-in replacement for the OpenAI APIs. If you have an LLM-driven application that uses one of OpenAI's client libraries, you can easily configure it to point to Scaleway Chat API, and get your existing applications running using open-weight instruct models hosted at Scaleway.
Creates a model response for the given chat conversation.
Request sample:
curl --request POST \
--url https://api.scaleway.ai/v1/chat/completions \
--header 'Authorization: Bearer ${SCW_SECRET_KEY}' \
--header 'Content-Type: application/json' \
--data '{
"model": "llama-3.1-8b-instruct",
"messages": [
{
"role": "system",
"content": "<string>"
},
{
"role": "user",
"content": "<string>"
}
],
"max_tokens": integer,
"temperature": float,
"top_p": float,
"presence_penalty": float,
"stop": "<string>",
"stream": boolean,
}'
Find required headers in this page.
Param | Type | Description |
---|---|---|
messages | array of objects | A list of messages comprising the conversation so far. |
model | string | The name of the model to query. |
Our chat API is OpenAI compatible. Use OpenAI’s API reference for more detailed information on the usage.
- temperature
- top_p
- max_tokens
- stream
- stream_options
- presence_penalty
- response_format
- logprobs
- stop
- seed
- tools
- tool_choice
- frequency_penalty
- n
- top_logprobs
- logit_bias
- user
If you have a use case requiring one of these unsupported parameters, please contact us via Slack on #ai channel.
- Python code examples to query text models using Scaleway's Chat API
- How to use structured outputs with the
response_format
parameter - How to use function calling with
tools
andtool_choice