|
| 1 | +import signal |
| 2 | +import torch |
| 3 | + |
| 4 | + |
| 5 | +class _Model_(torch.nn.Module): |
| 6 | + def __init__(self, nv, clauses) -> None: |
| 7 | + super(_Model_, self).__init__() |
| 8 | + |
| 9 | + self.e = torch.ones((1, nv)) |
| 10 | + x = torch.rand((1, nv)) |
| 11 | + self.x = torch.nn.Parameter(x) |
| 12 | + |
| 13 | + self.W = torch.zeros((len(clauses), nv)) |
| 14 | + |
| 15 | + self.target = torch.zeros((1, len(clauses))) |
| 16 | + |
| 17 | + self.SAT = torch.zeros((1, len(clauses))) |
| 18 | + for i, clause in enumerate(clauses): |
| 19 | + for literal in clause: |
| 20 | + value = 1.0 if literal > 0 else -1.0 |
| 21 | + literal_idx = abs(literal) - 1 |
| 22 | + self.W[i, literal_idx] = value |
| 23 | + self.SAT[0, i] = -len(clause) |
| 24 | + |
| 25 | + # Auxiliary for reporting a solution |
| 26 | + self.sol = torch.zeros_like(self.x) |
| 27 | + |
| 28 | + def forward(self): |
| 29 | + act = torch.tanh(self.e*self.x) @ self.W.T |
| 30 | + self.sol[self.x > 0] = 1.0 |
| 31 | + self.sol[self.x <= 0] = -1.0 |
| 32 | + return act |
| 33 | + |
| 34 | + def sat(self): |
| 35 | + unsat_clauses = (self.sol @ self.W.T) == self.SAT |
| 36 | + cost = torch.sum(unsat_clauses).item() |
| 37 | + return cost |
| 38 | + |
| 39 | + |
| 40 | + def __str__(self) -> str: |
| 41 | + return f'W={self.W}' |
| 42 | + |
| 43 | + |
| 44 | +class Solver(): |
| 45 | + def __init__(self, nv, clauses) -> None: |
| 46 | + signal.signal(signal.SIGINT, self.signal_handler) |
| 47 | + |
| 48 | + self.trace = { |
| 49 | + 'start_time': 0.0, |
| 50 | + 'nn_build_time': 0.0, |
| 51 | + 'max_sat_time': 0.0, |
| 52 | + 'nv': nv, |
| 53 | + 'nc': len(clauses) |
| 54 | + } |
| 55 | + self.sols = [] |
| 56 | + |
| 57 | + self.model = _Model_(nv, clauses) |
| 58 | + self.optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-2) |
| 59 | + self.loss = torch.nn.MSELoss() |
| 60 | + |
| 61 | + def compute(self): |
| 62 | + for i in range(1000): |
| 63 | + self.optimizer.zero_grad() |
| 64 | + out = self.model() |
| 65 | + output = self.loss(out, self.model.target) |
| 66 | + output.backward() |
| 67 | + self.optimizer.step() |
| 68 | + |
| 69 | + self.sols.append((self.model.sat(), self.model.sol)) |
| 70 | + |
| 71 | + return self.max_sat() |
| 72 | + |
| 73 | + def max_sat(self): |
| 74 | + max_sat = min(self.sols, key=lambda sol: sol[0]) |
| 75 | + return max_sat # returns (cost, assignment) |
| 76 | + |
| 77 | + def signal_handler(self, sig, frame): |
| 78 | + print(self.max_sat()) |
| 79 | + |
0 commit comments