forked from abhyantrika/nanonets_object_tracking
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsiamese_dataloader.py
executable file
·182 lines (139 loc) · 5.19 KB
/
siamese_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader,Dataset
import matplotlib.pyplot as plt
import torchvision.utils
import numpy as np
import random
from PIL import Image
import torch
from torch.autograd import Variable
import PIL.ImageOps
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from imgaug import augmenters as iaa
import imgaug as ia
import glob
def imshow(img,text=None,should_save=False):
npimg = img.numpy()
plt.axis("off")
if text:
plt.text(75, 8, text, style='italic',fontweight='bold',
bbox={'facecolor':'white', 'alpha':0.8, 'pad':10})
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
def show_plot(iteration,loss,path='loss.png'):
plt.plot(iteration,loss)
#plt.show()
plt.savefig(path)
class SiameseTriplet(Dataset):
def __init__(self,imageFolderDataset,transform=None,should_invert=True):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
self.should_invert = should_invert
def __getitem__(self,index):
img0_tuple = random.choice(self.imageFolderDataset.imgs)
while True:
#keep looping till a different class image is found. Negative image.
img1_tuple = random.choice(self.imageFolderDataset.imgs)
if img0_tuple[1] !=img1_tuple[1]:
break
#Selecting positive image.
anchor_image_name = img0_tuple[0].split('/')[-1]
anchor_class_name = img0_tuple[0].split('/')[-2]
all_files_in_class = glob.glob(self.imageFolderDataset.root+anchor_class_name+'/*')
all_files_in_class = [x for x in all_files_in_class if x!=img0_tuple[0]]
if len(all_files_in_class)==0:
positive_image = img0_tuple[0]
else:
positive_image = random.choice(all_files_in_class)
if anchor_class_name != positive_image.split('/')[-2]:
print("Error")
anchor = Image.open(img0_tuple[0])
negative = Image.open(img1_tuple[0])
positive = Image.open(positive_image)
anchor = anchor.convert("RGB")
negative = negative.convert("RGB")
positive = positive.convert("RGB")
if self.should_invert:
anchor = PIL.ImageOps.invert(anchor)
positive = PIL.ImageOps.invert(positive)
negative = PIL.ImageOps.invert(negative)
if self.transform is not None:
anchor = self.transform(anchor)
positive = self.transform(positive)
negative = self.transform(negative)
return anchor, positive, negative
def __len__(self):
return len(self.imageFolderDataset.imgs)
class SiameseNetworkDataset(Dataset):
def __init__(self,imageFolderDataset,transform=None,should_invert=True):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
self.should_invert = should_invert
def __getitem__(self,index):
img0_tuple = random.choice(self.imageFolderDataset.imgs)
#we need to make sure approx 50% of images are in the same class
should_get_same_class = random.randint(0,1)
if should_get_same_class:
while True:
#keep looping till the same class image is found
img1_tuple = random.choice(self.imageFolderDataset.imgs)
if img0_tuple[1]==img1_tuple[1]:
break
else:
while True:
#keep looping till a different class image is found
img1_tuple = random.choice(self.imageFolderDataset.imgs)
if img0_tuple[1] !=img1_tuple[1]:
break
img0 = Image.open(img0_tuple[0])
img1 = Image.open(img1_tuple[0])
img0 = img0.convert("RGB")
img1 = img1.convert("RGB")
if self.should_invert:
img0 = PIL.ImageOps.invert(img0)
img1 = PIL.ImageOps.invert(img1)
if self.transform is not None:
img0 = self.transform(img0)
img1 = self.transform(img1)
return img0, img1 , torch.from_numpy(np.array([int(img1_tuple[1]!=img0_tuple[1])],dtype=np.float32))
def __len__(self):
return len(self.imageFolderDataset.imgs)
class ImgAugTransform:
def __init__(self):
self.aug = iaa.Sequential([
iaa.Scale((224, 224)),
iaa.Sometimes(0.25, iaa.GaussianBlur(sigma=(0, 3.0))),
iaa.Fliplr(0.5),
iaa.Affine(rotate=(-20, 20), mode='symmetric'),
iaa.Sometimes(0.25,
iaa.OneOf([iaa.Dropout(p=(0, 0.1)),
iaa.CoarseDropout(0.1, size_percent=0.5)])),
iaa.AddToHueAndSaturation(value=(-10, 10), per_channel=True)
])
def __call__(self, img):
img = np.array(img)
return self.aug.augment_image(img)
if __name__ == '__main__':
class Config():
training_dir = "crops/"
testing_dir = "crops_test/"
train_batch_size = 64
train_number_epochs = 100
folder_dataset = dset.ImageFolder(root=Config.training_dir)
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((128,128)), #Important. make size= 128
torchvision.transforms.ColorJitter(hue=.05, saturation=.05),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.RandomRotation(20, resample=PIL.Image.BILINEAR),
torchvision.transforms.ToTensor()
])
siamese_dataset = SiameseTriplet(imageFolderDataset=folder_dataset,transform=transforms,should_invert=False)
vis_dataloader = DataLoader(siamese_dataset,shuffle=True,num_workers=8,batch_size=1)
dataiter = iter(vis_dataloader)
example_batch = next(dataiter)
concatenated = torch.cat((example_batch[0],example_batch[1],example_batch[2]),0)
imshow(torchvision.utils.make_grid(concatenated))